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Abstract. This paper presents a methodology to automatically generate an on-
line scheduling algorithm for a complex objective defined by an owner of parallel
identical machines. The objective is based on a combination of simple conven-
tional objectives. Specifically, we address a non-preemptive online scheduling
problem on parallel identical machines for a small user community with indepen-
dent jobs. As the scheduling problem is evaluated using simple conventional ob-
jectives for different users that are often contradicting a multiobjective approach
is needed. First, Evolutionary Algorithms are applied to create an approximation
of the Pareto front in a 7-dimensional space of possible schedules. This enables
the machine owner to define a complex objective according to his preferences.
For the actual scheduling, a simple Greedy algorithm is proposed whose parame-
ters are determined by an Evolutionary Algorithm such that the selected objective
is observed.

1 Introduction

We address the development of online algorithms for scheduling parallel and indepen-
dent jobs on m identical parallel machines using a complex objective that can be defined
by the machine owner. Within the online scenario, different users are submitting jobs
j ∈ τ over time. Both, the submission time rj and the execution time pj of job j are
unknown. The users only provide a rough estimate p̄j for pj . In practice, this estimate
is used to cancel job j if pj > p̄j , i.e. if the actual execution length of job j exceeds the
estimate. In order to make sure that a job without errors is not cancelled just before its
completion, users tend to overestimate the execution time [16]. Therefore, p̄j is of lim-
ited help for the purpose of schedule prediction unless users gain a benefit from a correct
estimate. Further, job j requires the concurrent and exclusive availability of mj ≤ m
machines during the whole execution time. Each machine is used by at most one job at
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any time. As the network does not favor any subsets of machines, the execution time pj

of job j is invariant of the subset of mj machines allocated to j. Also note that mj is
known once job j has been submitted. The completion time of job j in schedule S is
denoted by Cj(S). Finally, all jobs are run to completion, that is, we do not allow any
preemption [19, 18]. Therefore, job j is started in schedule S at time Cj(S) − pj ≥ rj

and requires a resource consumption (RC) of pj · mj . We denote by Cj(S) − rj the
flow time or response time of job j in schedule S. Contrary to other online scheduling
models, see, e.g. Albers [1], we do not require that machines must be allocated to a job
at time rj . Instead, the scheduler decides just before the start time Cj(S) − pj which
machines are used to execute job j. In practice, this scheduling model is used in many
parallel computers [15, 20], like, for instance, the IBM SP2.

Similar scheduling problems were already addressed in the past (e.g. Schwiegels-
hohn et al. [25]). However, in all those publications, only simple scheduling objectives,
like makespan, (weighted) completion time, (weighted) flow time, or utilization were
used. With respect to these objectives, either the competitive factor of an online schedul-
ing algorithm is determined [26] or the performance of an algorithm is evaluated with
the help of simulations using trace data from real installations [8].

Most real installations of parallel computers have many users (about 200) who are
frequently partitioned into user groups. Each job j belongs to one of these user groups
denoted by gj . The machine owner often does not treat all those groups in the same way,
but favors some user groups over others. To this end, he defines a so-called owner pol-
icy. The preferences of certain user groups is usually implemented by using priorities.
Nevertheless, such priority schemes are often not flexible enough, especially in com-
bination with several different objectives. As the above mentioned simple objectives
do not consider user groups at all, other methods are applied in order to implement
the owner policy. Those methods are often based on quotas. Unfortunately, even the
policies of a machine owner are rather vague as the impact of a more complex policy
on schedule quality in terms of several objectives has not been studied before. More-
over, quotas themselves are not well suited to fine tune a schedule with respect to an
objective.

In the work at hand we allow complex scheduling objectives. This requires both the
selection of such a complex objective and the development of a scheduling algorithm
that generates good schedules with respect to the selected objective. Here, we assume
that the complex objective can be generated by using the simple objectives. However,
the resulting complex objective is not a mathematical combination of the underlying
simple objectives. These simple objectives may concern the whole schedule, like the
total utilization, as well as parts of the schedule, like the average flow time for all jobs
belonging to a user group. We define a simple objective fi : S → R

≥0 to be a function
from the space S of all legal schedules for a given job system τ to the nonnegative real
numbers. It is the goal of the scheduling algorithm to find an optimal schedule σ =
arg minS∈S{fi(S)}. In our case, there are k different objectives f1, . . . , fk. Therefore,
we speak of a multiobjective or multicriteria scheduling problem [22]. It is clear that
usually, those objectives cannot all be met at the same time as the jobs of different user
groups compete for the available resources, that is, in general no legal schedule σ exists
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with
σ = arg min

S∈S

{f1(S)} = · · · = arg min
S∈S

{fk(S)}.

However, in some cases it is easy to decide that some schedule S1 is better than some
other schedule S2. This is clearly the case, if schedule S1 is better in all objectives
than schedule S2. This observation leads to the concept of Pareto optimality. In order
to introduce this concept, we first establish the so-called Pareto preference relation ≺p

among schedules:
S1 ≺p S2, iff (1)

∀i ∈ {1, . . . k} : fi(S1) ≤ fi(S2) ∧ ∃i ∈ {1, . . . k} : fi(S1) < fi(S2).

If S1 ≺p S2 holds then we say that schedule S1 dominates schedule S2. From a
decision theoretic point of view, schedule S1 is always preferable to schedule S2, iff
we have S1 ≺p S2. If neither S1 ≺p S2 nor S2 ≺p S1 hold then a more detailed
specification of preferences would be required in order to decide which schedule is the
better one.

Given a set of schedules G ⊂ S, the non-dominated subset of G is defined as

nd(G) = {S ∈ G|there is no S′ ∈ G with S′ ≺p S}. (2)

In Pareto optimization, we are searching for the Pareto set nd(S), that is the non-
dominated set for the whole space of legal schedules S. A schedule that belongs to
nd(S) is said to be Pareto-optimal. The set of objective function values of the Pareto-
optimal set is called the Pareto front. In our case, the machine owner can choose one
Pareto-optimal schedule of this set by taking into account further preferences. Note that
it is not trivial to decide in favor of one Pareto optimum if more than 3 objectives are
used. To this end, additional support in data representation is required. As this represen-
tation problem is not subject of this paper, we simply assume that the machine owner is
able to pick the required Pareto optimum or a set of Pareto optima.

However, the Pareto set cannot be computed due to the online character of our
scheduling problem. Therefore, we consider a workload trace of the same computer and
the same user community and assume that future workloads will exhibit a similar distri-
bution. Unfortunately, the problem of finding an optimal schedule is NP-hard even if all
release dates are 0 and we use the makespan objective f = Cmax = maxj∈τ{Cj} [22].
Therefore, it is not easy to compute an optimal schedule even for a single workload and
most simple objectives, particularly as typical workloads comprise more than 200,000
jobs. Trying to find the Pareto set for a workload with conventional methods is not
meaningful under these circumstances [22]. Therefore, we use heuristics that find ap-
proximations of the Pareto front. In Section 3, these heuristics are described in detail.

Once we know the Pareto front or a good approximation of it, and the choices of
the machine owner, we need to generate an online scheduling algorithm that achieves
a good schedule for a new set of input data with respect to the selected objective. Our
activities are restricted to reordering the set of jobs that have already been submitted
but not yet started. Remember that it is not allowed to preempt or cancel a running job.

Here we suggest a Greedy scheduling approach, that is, we will start the first job
in the list of the waiting jobs if enough machines are available for allocation. However,
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if this is not the case, we may decide to immediately start another job of the list pro-
vided enough machines are available for it. This approach is called Backfilling [17] and
can frequently be found in schedulers for parallel computers. Many classical schedul-
ing algorithms use priority lists to determine the scheduling order of the jobs. In case
of parallel jobs, for instance, sorting in decreasing order of the generalized Smith ra-
tio wj

mj ·pj
may be the method of choice (Schwiegelshohn [23]). There, each job j is

also assigned a weight wj . In many scheduling papers, this weight is simply an input
variable. Some papers require that it is the same as the resource product mj · pj thus
giving all jobs the same priority [25]. In this paper, the definition of the weight becomes
part of an algorithm that tries to generate a schedule following the objective of the user.
Note, that in general each possible schedule can be described by one sequence of jobs in
combination with a Greedy scheduling approach in the offline scenario. This is not the
case within the online scheduling scenario as jobs need to wait for later, not yet visible
jobs in order to generate the corresponding offline schedule. This cannot be fulfilled by
the chosen Greedy scheduling approach. Therefore, the quality of the generated online
scheduling algorithm will be lower in comparison to the offline case. During the deter-
mination of appropriate job weights, we apply heuristics to determine the relationship
between the input data of a job and the weight. Further, note that the extended Smith
ratio also requires the processing time of a job. To this end, we use the user provided
estimate of this value even as we are aware of a potentially large overestimation. How-
ever, as a smaller estimated execution time favors a faster start of this job, we hope that
this will be an incentive for the job owners to provide accurate estimates.

The remaining parts of the paper are organized as follows. After having outlined the
general concept in this section, we address several specific problems next. In Section 3,
we describe the used multiobjective Evolutionary Algorithms in detail. The evaluation
of schedules is subject of Section 4. The paper ends with a conclusion of the main
results.

2 Specific Constraints of the Problem

Online scheduling algorithms are frequently evaluated with the help of competitive fac-
tors, e.g. [21, 13]. This competitive factor is the upper bound for the ratio between the
quality of the schedule generated by the algorithm and the quality of an optimal sched-
ule for the same job set. Please note that the schedule quality is a real positive number
with lower values being better. Therefore, competitive factors are based on a worst case
approach. Unfortunately, this concept is of limited help for many real applications as the
worst case occurs very rarely. In contrast, strategies with a very bad worst case behavior
often work well in practice [14, 24].

Similarly, competitive factors cannot be applied in our case as there is currently
no applicable description of the structure of a typical workload. In addition, the deter-
mination of an optimal schedule for a given workload is computationally expensive.
Therefore, we approximate this optimal schedule by using a heuristic. Then we con-
sider the ratio between the quality of the schedule generated by our algorithm and the
quality of the approximation of the optimal schedule for each available workload. The
final ratio is calculated as the average of all those workload specific ratios.
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Figure 1 presents our problem. Here, different users or customers with varying goals
are submitting jobs to a system. The sequence of those jobs forms the overall user
demand. Then the scheduling system is responsible to allocate the requested machines.

Fig. 1. Principle problem description.

The scheduling algorithm for the assignment of machines to jobs can be specified
by the machine owner. The quality of the assignment is determined by a complex ob-
jective function. Note, the quality of a single assignment of machines to a job cannot
be measured, because an optimal assignment at the moment might result in a poor so-
lution in the future. Therefore, only the assignment of all jobs within one trace can be
evaluated at the end of the scheduling process.

A major goal of our work is the development of a robust scheduling algorithm. Ro-
bust means that the same algorithm can be applied to various workloads with a similar
scheduling behavior. The development process takes this into account since the evalua-
tion of a specific scheduling algorithm incorporates the achieved scheduling results for
several workload traces.

The development of the mentioned multiobjective scheduling algorithms is there-
fore divided into several steps that are shown in Figure 2.

Algorithm
Workload Scaling

Algorithm

Machine Owner

Specification
Preferences

Evolutionary
Multi−Objective

Algorithm

Evolutionary
Single−Objective

Fig. 2. The development of a multiobjective scheduling system.

As already mentioned, the development of scheduling algorithms in the past was
focused on the optimization of simple objective functions. In order to define appropriate
scheduling goals, the resource owner needs to know which solutions are achievable.
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So the complete space of possible solutions has to be explored by creating the Pareto
front of all possible schedules for given workload traces. Multiobjective Evolutionary
Algorithms are appropriate for this task. However, these algorithms do not guarantee to
produce the true Pareto front. Nevertheless, they have proven to approximate the Pareto
front with a high quality.

Using the achieved Pareto front, the owner can define a preferred region within this
multidimensional solution space. The definition expresses the machine owner’s prefer-
ences but does not result in a mathematical combination of the underlying monotone
objectives. However, a function that can be used to find the preferred regions with Evo-
lutionary Algorithms can be defined based on the given selection. The selection of the
preferred regions by the machine owner is a complicated procedure as we are using
seven criteria in this study (see Section 4.1). This procedure is excluded from this paper
as the main focus is on the development of the scheduling algorithms. Instead, we use
a randomly generated criterion built up from those seven monotone objectives.

Subsequently, an optimized online scheduling algorithm can be developed by pa-
rameterizing an existing Greedy scheduling strategy. Such a strategy is represented by
a fixed algorithm with a few static parameters. Those static parameters are used to sort
new incoming jobs into the queue of waiting jobs. During this process, the static param-
eters are used to calculate a job weight by combining the static and the job parameters.
These job weights are used to sort the jobs. Whenever machines become available, the
next job from the waiting queue is scheduled using the well-known First-Come-First-
Serve (FCFS) strategy [17].

The used weight function to calculate the job position can be defined by the machine
owner. Singleobjective Evolutionary Algorithms are applied in order to optimize the
corresponding static parameters regarding the objective function.

Figure 1 further includes external influences and a feedback of the various cos-
tumers resulting from the last scheduling decisions. The feedback behavior as well as
external influences, e.g. power failures of the parallel computer or certain holidays, are
neglected in our work. These influences highly depend on the local environment and
therefore are difficult to model. The user feedback is not used as nowadays user models
are not able to extract such information.

2.1 Developing an Adapted Scheduling Algorithm

The development of an adapted scheduling algorithm is divided into several steps. First
the space of possible scheduling solutions has to be explored, second, the machine
owner needs to define the optimization function based on the generated space of pos-
sible solutions. This process is followed by adapting an existing scheduling algorithm
through the adjustment of a few static parameters.

Exploring the Scheduling Solution Space A normal scheduling procedure itself is
not able to generate the Pareto set as the behavior of the scheduler is deterministic and
the scheduling result only depends on the given workload trace. Figure 3 shows the
simplified scheduling system.

A workload trace from a real installation is used to represent all incoming jobs.
Here, job j is moved to the waiting queue when the corresponding submission time rj
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Queue
Waiting WorkloadSchedule

Scheduler

Fig. 3. The figure shows the simplified scheduling system. A workload is used as the simulation
input. All jobs that are known to the system but have not been started yet are stored in a waiting
queue. A scheduler decides which job of the waiting queue is included in the schedule next.

is reached. Then the First-Come-First-Serve strategy, which will be described in detail
later (see page 8), is applied. In order to explore the space of possible scheduling so-
lutions, two different approaches have been examined. First, a reordering of the given
workload trace by using Evolutionary Algorithms with a representation to change se-
quences is applied. Second, a different Evolutionary Algorithm modifies coefficients
of a predefined weight function that is used to calculate a weight for each job in the
queue of waiting jobs. This queue is reordered according to the weights afterwards.
Both approaches will be explained in more detail.

In the first approach Evolutionary Algorithms are used to modify the order of all
jobs in the original workload. During this procedure three main constraints must be
fulfilled:

– For all jobs j ∈ τ : j cannot start earlier than its submission time rj .

– For the new ordering of jobs: a job l can not be started earlier than job j if j < l.

– Following the first two constraints, every job is started as soon as possible.

This process will sometimes create big delays in the resulting schedule. However,
this might be optimal for the response time of a certain user group and therefore a Pareto
optimum within the solution space.

The second approach of changing the order of all jobs within the waiting queue
is limited in comparison to the first attempt. Theoretically, every possible sequence of
jobs can be created by using the first method. The second method is restricted to local
modifications of the job sequence. However, it can be implemented easier and also the
corresponding Evolutionary Algorithm is simpler.

In this second approach all situations are divided into three classes. This is the out-
come of other studies [7] where significant patterns of workloads are extracted. The
three mentioned classes are weekends, week days between 8am and 6pm and week
days between 6pm and 8am. Within each of these classes, one of four different math-
ematical functions is used to calculate job weights that are used during the reordering
process. Those four possible functions are:
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f1(j) = �i(j) · wi ·
(

Ki + a · tj
p̄j

+ b · p̄j

mj

)
(3)

f2(j) = �i(j) · wi · (Ki + a · tj + b · p̄j · mj) (4)

f3(j) = �i(j) · wi ·
(

Ki + a · tj
p̄j · mj

)
(5)

f4(j) = �i(j) · wi ·
(

Ki + a · tj + b · p̄j

mj

)
(6)

�i(j) =
{

1, if gj = i
0, otherwise.

(7)

Here, tj denotes the actual waiting time of job j. The Evolutionary Algorithms
described in Section 3 modify the static parameters wi, Ki, a, and b. Furthermore, the
assignment of mathematical functions to the three different classes is modified. The
definitions of the Functions (3) to (6) are based on the adjustment of parameters wi and
Ki depending on the user group i that job j belongs to. This is motivated as the Pareto
front represents the different goals of the participating user groups.

Having applied one or both of the described approaches, the overall Pareto set is
extracted. Now the administrator of the resources can flexibly define the preferences by
combining several parameters within a complex function. This evaluation function can
then be used to develop an appropriate scheduling algorithm in a future step.

As the applied scheduling algorithms represent heuristics, good starting solutions
are often needed. To this end, we generated initial solutions for the sequencing of the
whole workload as well as for the reordering of the waiting queue. The classification
of jobs to user groups was used to derive those starting solutions. This is reasonable
as some user groups may be more important to the resource owner and, therefore, the
corresponding jobs should be processed first.

In detail, we developed a deterministic permutation rule which was statically ap-
plied to the original workload trace before the simulation starts or dynamically to the
waiting queue during the simulation. In both scenarios, the jobs are ordered according to
their corresponding user group. However, we used a more complex permutation as also
combined job subsets were used. This will be explained using a small example of three
user groups. One permutation is described as a tuple of ordered jobs. The notation (x, y)
describes that all jobs from both user groups x and y are taken intersected from the orig-
inal sequence. So, for the three user groups 13 different permutations can be generated:
{1,2,3}, {(1,2),3}, {1,(2,3)}, {(1,2,3)}, {1,3,2}, {(1,3),2}, {2,1,3}, {2,(1,3)}, {(2,3),1}
{2,3,1}, {3,1,2}, {3,(1,2)} and {3,2,1}. For five different user groups 540 orderings are
possible.

A comprehensive description of the underlying scheduling system that was used
during our work will be given in the next paragraph. Note that for each workload trace
the same procedure has to be applied to achieve the corresponding results.

Scheduling Algorithm The underlying scheduling strategy is applied in many real-
world environments like installations of the IBM SP/2. This FCFS strategy (see [24])
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is often combined with Backfilling [17]. For the FCFS strategy all incoming jobs are
added at the end of a job queue of all waiting jobs. Jobs within this waiting queue are
executed in their submission order. A job can not be started if an earlier submitted job
has not been started yet. Each job is executed as soon as possible. So using FCFS no
job can overpass any previous job. Backfilling modifies this principle as jobs within the
waiting queue can be started earlier than previous jobs if the estimated start times of
those previous jobs are not further delayed. The estimation of the start time is calcu-
lated by the scheduler using the runtime estimations given by the users. FCFS has a
bad worst-case behavior but has proven to work well at real installations. Nevertheless,
FCFS and all its variants are only trying to reduce the waiting time as the only schedul-
ing objective. Furthermore, FCFS does not provide any mechanisms for prioritization
of jobs or certain user groups. This can only be done by reserving resources for such
tasks, which typically reduces the utilization.

Other systems that are able to provide more flexibility than FCFS are mostly rule-
based. Only very few of such systems have been developed yet [6, 8]. Based on such
rules, market-oriented approaches have been implemented. Those systems provide a
very flexible mechanism to find the equilibrium between the supply of resources and
the user demand. However, the working principle of such a market environment is that
many resources and many users are interacting. This pre-condition is not fulfilled in our
scenario as only one parallel computer and a limited number of users exist.

Developing an Adapted Greedy-Scheduling After having generated an approximated
Pareto front, the machine owner is able to specify local preferences. Here, a graphi-
cal tool is used to select preferred regions within the multidimensional solution space.
These preferences are used to construct a fitness function for the following optimization
process.

In the next step, this fitness function is used to adapt an existing Greedy scheduling
algorithm that uses job weights. Within this process, submitted jobs are inserted into a
queue of waiting jobs. The position of the new job within this queue depends on the
weight of the job. The following scheduling is based on this ordered queue and tries
to start each job as early as possible. The Backfilling strategy introduced above is also
applied.

In theoretical literature Greedy scheduling is often called weighted flow time schedul-
ing. However, in such works the job weights are input data. In opposite, our goal is to
develop a system which maximize the machine owner’s objective by optimizing the job
weights. Here, these job weights are static since they are calculated using a determinis-
tic function including all job parameters. Therefore, the weights are independent from
the actual schedule. However, as the actual waiting time of jobs can also be used, the
dynamic structure of the waiting queue can be included into the scheduling process.

The deterministic Functions (3) to (6) calculate the precise job weights using the
static job attributes. The whole set of parameters that optimizes the objective of the
machine owner is unknown. Evolutionary Algorithms are used to find good sets of
such parameters. In combination with the Greedy scheduling those sets can be used to
specify the insertion function. Here, the comparison of parameter sets between different
workloads is interesting as we hope to find sets which produce good results for different
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workloads, assuming that the machine owners provide similar objectives. The details of
the Evolutionary Algorithms are presented in Section 3.

3 Evolutionary Multiobjective Optimization Algorithms

In this section we introduce the evolutionary multiobjective optimization algorithms
(EMOA) that were evaluated in this paper for generating approximately Pareto-optimal
schedules. After some general remarks on the structure and purpose of EMOA, we
introduce the selection and variation operators that have been used for the problem
at hand. This will be done for two different representations for schedules: First we
introduce evolutionary algorithms (EA) that work on a direct coding as permutations
describing the job sequence. Secondly, we propose an EA working with an indirect,
real valued coding, where the real valued optimization variables are the parameters of
the job weighting function in a Greedy scheduler, that is then used to generate a job
sequence.

3.1 Introduction to EMOA

For reasons of limited time and space it is often not possible to determine the entire
Pareto front (see Expressions (1) and (2) on page 3) for a problem and it is justified to
search for an approximation of it. This is also the case for the job sequencing problem
at hand, because a huge combinatorial search space (njobs! elements) has to be explored
with a very limited number (about 5,000) of black-box evaluations.

Several multiobjective optimization algorithms aim at finding such approximations
to the Pareto front. Usually, it is demanded to achieve a good convergence as well as
a good coverage of the Pareto front. A good convergence is achieved if all points in
the obtained set are similar or very close – with regard to some distance measure in the
solution space – to members of the Pareto set. A good coverage is achieved if the set is
well-distributed over the whole Pareto front.

Among the approximation algorithms, EMOA have become very popular. Their
flexibility, robustness and their population concept makes them well suited for approx-
imating Pareto sets. EMOA are variants of evolutionary algorithms for multiobjective
optimization. Evolutionary algorithms mimic basic principles of biological evolution
in order to solve complex problems. Typically, they are applied as randomized search
heuristics for solving black-box optimization problems. In particular, they repeatedly
apply random variation and selection operators on a set of solution candidates (popula-
tion). By means of the variation operators (recombination and mutation) the algorithm
repetitively generates modified offspring solutions from the current parent solutions.
Recombination operators generate an offspring as a mixture of several parents and mu-
tation operators create an offspring as a slight modification of one parent. Single solu-
tions are called individuals for which objective function values are computed. Within
the selection operator this function value is interpreted as the individual’s fitness. By
preferably selecting individuals with a higher fitness, the population gradually moves
to regions of the search space in the proximity of optimal solutions, or Pareto-optimal
solutions in the presence of multiple objectives.
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To put things into more concrete terms, a sketch of a so-called (µ +, λ)-EA, a
common variant of an EA, is given in Algorithm 1.

Algorithm 1 (µ +, λ)-EA
P0 ← evaluate(init()), P0 ∈ I

µ

t← 0
while not terminate() do

Qt ← evaluate(generate(Pt)), Qt ∈ I
λ {Generate λ solutions using recombination and/or

mutation}

Pt+1 ←


select(Qt) for (µ, λ) selection
select(Pt ∪Qt) for (µ + λ) selection

t← t + 1
end while

The algorithm starts with the initialization and evaluation of a parent population of µ
individuals in the individual space I. Then the evolutionary loop is repeated until a
termination criterion is fulfilled: First, λ offspring individuals are generated by means
of the random variation operators from the current parent population. This is done by
employing recombination and/or mutation operators, which can be specific to the prob-
lem at hand. Then, the objective function values of all new individuals are evaluated.
Based upon the evaluation results, a new population of individuals is selected. In case
of a comma strategy the new parents are chosen from the offspring (Qt) only. The plus
strategy takes also the parents into account (Pt ∪Qt). Each loop incorporating the pro-
cedures above is called a generation.

In EMOA the selection operator favors non-dominated solutions to dominated solu-
tions and thereby gradually moves the population to the Pareto front of a given problem.
When comparing solutions that are mutually non-dominated, the selection operator typ-
ically prefers solutions that contribute more to a high diversity of the population in the
solution space.

Common variants of EMOA have been discussed and compared on benchmark func-
tions in the book by Deb [4]. An easy to use, but powerful EMOA is the non-dominated
sorting genetic algorithm (NSGA). Presently, there are two versions of this algorithm,
namely NSGA and NSGA-II. These algorithms had been the starting point for the de-
velopment of an algorithm for finding optimal scheduled job sequences. Hence, they
are described in more detail now.

Basically, the idea of the selection scheme of NSGA is to compute a scalar fitness
value for each solution based on a dominance rank and its contribution to the popu-
lation’s diversity. Given a set Gt of candidate solutions, in NSGA these solutions are
ranked by means of non-dominated sorting and fitness sharing in order to decide which
of these solutions shall enter the subsequent population Pt+1. Non-dominated sorting
partitions Gt into several subsets of solutions that are mutually non-dominated. Ranks
are assigned to these partitions, meaning that each solution from a partition with a
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higher rank is dominated by a solution of every lower ranked partition. Thus, the so-
lutions of partition with rank 1 are non-dominated and the partition with the highest
ranking number is the worst. To obtain these partitions, first the non-dominated set N1

of a set of candidate solutions Gt is determined. To the elements of N1 the rank 1 is as-
signed. From the remaining set Gt\N1, again the non-dominated set N2 is detected and
to its members the rank 2 is assigned. Then the non-dominated set from Gt \ (N1∪N2)
is determined. This process continues until Gt \ (N1 ∪ N2 . . . ) is empty. Now, to each
element of the set a rank was assigned, though several individuals might share the same
rank. After non-dominated sorting Gt, to each ranking partition a dummy fitness value
is assigned. Then for each particular individual its fitness value is slightly altered ac-
cording to a sharing criterion. The substitute fitness value is shared between similar
individuals and therefore rewards solutions that well contribute to the diversity of a par-
tition. The parameter of this sharing term is chosen heuristically [4]. We will not go into
detail here, because later on a new version of the NSGA will be introduced that skips
the sharing parameter. It is made sure in the NSGA sorting procedure that the substitute
value for a member of a partition is by all means worse than the substitute fitness of a
partition of lower rank.

Having computed the dummy fitness value for all solutions standard selection meth-
ods from EA can be used. In NSGA only the offspring are considered to become parents
of the next generation. Because the number offspring was limited, additionally we used
a fitness proportional selection scheme for reproduction [2, C2.2]. This means that in-
dividuals with higher fitness potentially generate more offspring than individuals with
worse fitness. Whereas in NSGA the selection mechanism is a comma strategy, an elitist
strategy had often been recommended for combinatorial problems [3, p. 8]. The (µ+λ)
selection scheme is elitist, meaning that an all dominating solution would be selected.
In addition, it is known from literature that this elitist method allows for a comparable
fast approximation of Pareto-optimal points [4].

A new variant of evolutionary algorithms that employs non-dominated sorting, too,
is the NSGA-II algorithm. This algorithm applies a plus selection and makes use of a
different diversity measure, in order to rank solutions that share the same dominance
level (rank assigned by the non-dominated-sorting algorithm). In order to establish a
total order among the elements of a partition, crowding distance sorting gets employed.
By means of this procedure, elements that contribute more to the diversity of a Pareto
front are ranked better. In particular, the distance to the nearest solution is determined
for each positive and negative coordinate direction in the solution space. Here, the coor-
dinates are always sought as the coordinates of the solution vectors. In order to calculate
a scalar value, all these relative distances are summed up and the resulting value is the
crowding distance. Extremal solutions that have no neighboring solutions in at least one
of the coordinate directions, are always preferred to non-extremal solutions. In contrast
to the sharing distance employed in NSGA, the crowding distance does not require the
specification of an extra parameter.

In Figure 4 and Figure 5 the sorting procedure of NSGA-II is illustrated for a two-
objective minimization problem. Figure 4 displays the three partitions detected by the
non-dominated sorting procedure, while Figure 5 displays the ordering of the first par-
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tition due to crowding distance sorting. The notches in the figures indicate a gap in the
co-domain of the vector valued objective function.

3.2 Problem Representation

EAs can deal with nearly arbitrary representations, as the coding of a problem is called
within this context. For a given optimization problem there often exist several ap-
proaches to an appropriate representation. In most cases these could be divided in gen-
eral and more specialized ones. In the general approach a representation is chosen which
reflects the given problem in a natural manner. In our situation a schedule is an individ-
ual and is coded as a permutation representing the processing sequence of the jobs. For
solving the schedule problem with a permutation representation we could fall back on
the wide range of standard variation operators for combinatorial problems [2, C3]. This
approach works on the whole workload.

The scheduling problem consists of a high problem dimension. To reduce this, an
alternative EA with a relatively low dimensional real coded representation was tried. In
this approach the EA only determines the parameters of the job weighting function of
a Greedy scheduler. The Greedy scheduler then generates a job sequence on basis of
these parameters.

Coding as Permutation The design of variation operators was oriented at some general
design principles, e.g., that small changes are more probable than great ones and that
by a concatenated application of the operator any element in the search space can be
reached from any other element. Moreover, variations should be reversible, meaning
that a single operation should have the same probability as its inverse operation.

Following these guidelines, for permutation based optimization problems two ele-
mentary operations were identified. The first one is the swap of two elements and the
other one the movement of one job to another position [2, C3.2.3]. A mutation operator
then consists of repetitive applications of these elementary variations. The number of
operations that are carried out within one mutation step can be controlled by certain
parameters that are part of the individual. A general parameter is the number of ele-
mentary operations, called mutation frequency. Moreover, there is a parameter for the
distance of jobs that shall be swapped, called mutation jump length. This parameter is
used as well for the number of jobs a moved job shall pass. All parameters are initial-
ized externally by user defined values. Within the EA, those parameters are subjected
to an evolutionary process as well, which is called self-adaptation. Practically speak-
ing, the mutation operator, with the same probability, multiplies or divides the scaling
parameters of an individual with a constant value of γ = 1.3 in each generation. The
modified parameters are then used in the computation of the modified sequence.

The first mutation operator swaps only adjacent elements, which is the smallest
possible change of a permutation. This only leads to small changes in the objective
function values. To reach noticeable improvements for the given scheduling problem
with more than 100,000 elements, a large number of adjacent swaps is necessary.

A second mutation operator swaps two distant randomly chosen elements. The mu-
tation jump length serves as the mean distance between the two elements. This distance
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Fig. 4. Illustration of the non-dominated sorting procedure. The numbers attached to the solutions
indicate the rank that was assigned to them by the non-dominated sorting.
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Fig. 5. Illustration of the crowding distance sorting of members on the Pareto front. The cir-
cumference of the boxes touching neighboring solutions are the ranking criteria. The numbers
assigned to the solutions indicate their rank. Note, that extremal solutions are always preferred to
non-extremal solutions.
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is chosen as a geometrically distributed random number. The swap operator allows for
greater changes with fewer mutations.

In a problem-specific implementation of the mutation operator a job could only
move towards the end. Such a job must follow some rules, concerning some job prop-
erties. For example, the jobs need to have a minimal number of processors as well as a
minimal approximated run time. This means that only "big" jobs are moved, which is
assumed to have greater impacts on the results.

A new design of the mutation operator was chosen as an alternative, that will be
described next. In an outer loop every time a user group is chosen randomly. In an
inner loop the jobs of the other user groups are selected randomly and moved some
positions towards the end. At the same time, only big jobs, as specified before, are
moved. As before, the number of the moved jobs as well as the mean moving distance
are controlled by endogenous strategy parameters, which could change during the run
by self-adaptation. By means of this new mutation operator it is likely that the muta-
tion operator generates an improvement in at least one of the objectives. Since another
user group is chosen each time, improvements can be obtained in each direction of the
solution space leading to a well-spread Pareto set.

Many recombination operators were proposed for symmetric problems such as TSP.
For the asymmetric scheduling optimization problem such operators are inappropriate.
Therefore, the recombination of schedules was done with several strategies as described
in [2, C3.3], but none of them were successful. Hence, we reject to present the tried
recombination operators in detail.

In EA there are two possibilities to initialize the starting population. On the one
hand the population could be initialized with random elements. On the other hand we
could start with some heuristically generated solutions, e. g. a mix of solutions such
that each of solutions favors one of the users. These start solutions are only used for
generating the first population and can not survive the first generation. Both alternatives
were tested for the permutation representation.

Real-valued Coding To reduce the problem dimension, an approach using an alterna-
tive representation was developed. Instead of directly determining the positions of the
jobs in the schedule, the parameters of an online scheduler are optimized. The online
scheduler then generates a job sequence, which depends on these parameters. Again,
for this sequence the different objectives are evaluated. By means of this indirect rep-
resentation of job sequences, it is possible to reduce the number of variables to be
optimized to 36 real valued parameters. Of course, the suggested representation has the
disadvantage that not all possible job sequences can be coded. But even in the former
strategy, due to the huge search space it is impossible to visit all elements of the search
space within the given time. However, it can be assumed that the represented solutions
comprise an interesting part of the search space with regards to the problem at hand.

A real-valued instantiation of an NSGA-II was used to optimize the parameters of
the online-scheduler as described in Section 2. The evolutionary algorithm optimizes
the parameters of the functions which calculate the precise weight of a job. We em-
ployed an NSGA-II with a (µ + λ)-selection scheme. This time, the genome of an
individual consists of the 36 real parameters of the job weighting function used by the
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Greedy scheduler to generate a job sequence. These values are initialized with values
chosen uniformly at random between problem specific lower and upper bounds. Af-
ter the µ individuals of the initial population have been generated randomly, they are
evaluated. The Greedy scheduler reorders the jobs in the waiting queue regarding its
weighting functions which are parameterized by NSGA-II. Then the seven objective
functions are evaluated and these values are returned to the evolutionary algorithm.
From the perspective of the evolutionary algorithm, the combination of Greedy sched-
uler and evaluation of a job sequence serves as a black-box, and therefore the evaluation
of each individual is just a function call of the simulated scheduler.

After having evaluated the initial population, the evolution process starts. Now, λ
offsprings are generated from the current population by means of variation operators.
First, with probability of pc = 0.9 a recombination operator called SBX (see [4] for
details) is applied. This operator randomly chooses two individuals from the current
population as parents. From these parents one offspring is generated by simulating a
single-point crossover of a binary string, meaning that the beginning of the string is
taken from the first parent and behind a randomly chosen point the values from the
second parent are taken. By using the SBX operator, the radius in the search space in
which random variations of individuals are generated is proportional to the radius of the
parent population. Therefore, the step size of variations gets smaller as the population
concentrates around a local optimum. This offspring individual is then changed by a
mutation operator called polynomial mutation [4]. Here with probability equalling the
reciprocal number of parameters, each gene is slightly modified by an additive term that
is distributed according to a polynomial function. The parameterization of the variation
operators is exactly chosen as given in literature [5].

4 Scheduling Evaluation

The described methodology to develop an appropriate scheduling algorithm has been
applied to various workload traces. Within this section the results achieved during the
development process are presented.

In the following the evaluation objectives used in this work will be introduced fol-
lowed by a detailed discussion about the achieved results.

4.1 Evaluation Objectives

In order to evaluate different schedules many scheduling objectives can be used. Objec-
tives in the presence of Evolutionary Algorithms are often called criteria. In the follow-
ing we use both terms interchangeable. Our research is restricted to seven objectives.
On the one hand, those seven criteria enable the provider of the resources to choose an
appropriate region within this 7-dimensional space where the preferred schedule should
be generated. To our knowledge no other research on scheduling algorithms has used
more than four objectives. On the other hand, such a decision space is a very good en-
vironment to use and adapt existing multiobjective Evolutionary Algorithms as seven
dimensions are only very rarely examined.
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All of the seven objectives to describe the achieved scheduling results can only
be calculated at the end of a whole simulation. A simulation consists of one specific
workload, a resource description and a selected scheduling method. The outcome is
evaluated using the following seven objectives:

– the utilization of the whole parallel computer.
– the average weighted response time for all users together (AWRT).
– the average weighted response time for user group 1 (AWRT 1).
– the average weighted response time for user group 2 (AWRT 2).
– the average weighted response time for user group 3 (AWRT 3).
– the average weighted response time for user group 4 (AWRT 4).
– the average weighted response time for user group 5 (AWRT 5).

The calculation of the average weighted response time (AWRT) is defined in Equa-
tion (8). It uses the resource consumption (RC) for job j, that is defined on Page 2. By
weighting the response time of each job with its resource consumption, all jobs with the
same resource consumption have the same influence on the schedule quality. Otherwise
a job with only few processors would have the same impact on this metric as a wider
job with the same response time [25]. Note that in this context wider job means that
many processors are needed to process the job.

AWRT =

∑
j∈τ

(RCj · (Cj(S) − rj))
∑
j∈τ

RCj
(8)

The classification of the response time for different user groups is introduced as in
real installations of parallel computers different user groups have different rights and
priorities. This has been modeled in our work, as we assign jobs to certain user groups
by calculating the resource consumption for all jobs. Now for each user the sum of all
corresponding job resource consumptions is calculated and the user is assigned to a
group. In our work we assume that the groups are built by users with a certain level of
resource demand. Group 1 represents the ”power users” and group 5 the very infrequent
users.

As the evaluation objectives are computed for each user group it is necessary to
explain the generation of those user groups in more detail. Table 1 consists of the overall
resource consumption which is needed for a user to become a member of the specified
user group. Again, group 1 represents the ”power user” and group 5 the very infrequent
user.

4.2 Used Workload Traces

The workload traces which were used for the evaluation process of the whole system are
taken from the Standard Workload Archive [11]. Here we chose the seven well-known
workloads from the NASA [12], the Cornell Theory Center (CTC) [15], the Swedish
Royal Institute of Technology (KTH) [20], the Los Alamos National Lab (LANL) [9]
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Table 1. The assignment of user to user groups depending on the corresponding resource con-
sumption (RC).

User Group 1 2 3 4 5

user RC/overall RC > 8% > 2% > 1% > 0.1% ≤ 0.1%

and the San Diego Supercomputer Center (SDSC SP2/SDSC 95/SDSC 96) [10, 27]. So
each workload is recorded at a real parallel computer and includes detailed information
about the stream of job requests for the computational resources. Each job description
consists of 18 parameters like the job arrival time, the required number of nodes, the
requested period of execution and the user identification [11]. For each job the user
group, as explained above, was added.

The available workload traces differ much in their characteristics. One of the main
reasons is the different number of available resources as shown in Table 2. This also
prevents the comparison of the scheduling behavior between these traces. To this end,
we scaled the traces as described in [7] up to 1024 processors. The data of those modi-
fied traces are presented in Table 3. These modified workload traces were used to create
the multiobjective scheduling solution space.

Table 2. Original workload traces from the Standard Workload Archive [11].

Identifier NASA CTC KTH LANL SDSC
SP2

SDSC 95 SDSC 96

Machine iPSC/860 SP2 SP2 CM-5 SP2 SP2 SP2
Period 10/01/93

-
12/31/93

06/26/96
-
05/31/97

09/23/96
-
08/29/97

04/10/94
-
09/24/96

04/28/98
-
04/30/00

12/29/94
-
12/30/95

12/27/95
-
12/31/96

Processors 128 430 100 1024 128 416 416
Jobs 42264 79302 28490 201378 67667 76872 38719

Table 3. Modified workload traces (only the modified values) regarding to [7].

Identifier NASA CTC KTH LANL SDSC SP2 SDSC 95 SDSC96

Processors 1024 1024 1024 1024 1024 1024 1024
Jobs 188986 136471 167375 201378 310745 131762 66185
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4.3 Generating an Approximate Pareto Front

As described in Section 2.1 the set of Pareto-optimal solutions can be generated in two
ways. The approach of modifying the sequence of jobs for the whole workload will be
described first.

During this step some technical restrictions exists. Each workload trace, described
in Section 4.2 has a size of 10-15 MB. Therefore, the offspring within the Evolutionary
Algorithm is restricted to about 60 elements. Otherwise the physical memory require-
ments within the simulations exceed the existing physical memory of the computer
which performs the evolutionary operations. Each individual scheduling simulation has
been performed on a separate computer within a cluster. Depending on the original
workload file each simulation took about 40-120 minutes.

In the following, only results for the CTC workload will be presented. Except of
the NASA workload all other traces show a similar behavior. The NASA workload
is in some sense artificial as nearly no job ever waits for the execution, that is the
jobs are started directly after submission [7]. Therefore, a reordering of the jobs is not
meaningful in this case.

Furthermore we present several diagrams e.g. one for the utilization in combination
with the overall AWRT, and one for the overall AWRT and the AWRT 1. For all other
user groups similar diagrams could be drawn. Also the AWRT 1 and AWRT 2 will be
compared. The diagrams for all other user group pairs look similar.

65

66

67

68

55 57 59 61 63 65 67 69 71

Average Weightes Response Time in 1000 seconds

U
ti

li
z
a
ti

o
n

in
%

NSGA2

NSGA1

Fig. 6. NSGA and NSGA-II: Utilization versus AWRT using the CTC workload.

In Figures 6 to 8 all achieved non-dominated solutions for the NSGA and NSGA-II
variants are presented. In both scenarios the sequence of the whole workload before
the simulation was modified. The results clearly show, that the number of found solu-
tions for both approaches is very small. In the sum, we only found three non-dominated
solutions using NSGA. During the exploration of the solution space we tested several
strategies. First, NSGA was used with a randomly generated initial population. The
achieved results were very poor, as the best solution had a utilization of about 40 %.
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Fig. 7. NSGA and NSGA-II: AWRT versus AWRT 1 using the CTC workload.
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Fig. 8. NSGA and NSGA-II: Comparison of the AWRT 1 and AWRT 2 using the CTC workload.

In the following, the deterministically generated initial solutions were used (Figures 9
to 11). Note, the axis for the average weighted response times have in two cases (Fig-
ures 10 and 11) a logarithmic scaling. The use of starting solutions increased the quality,
but still the number of achieved solutions was very small. The deterministically gener-
ated solutions provide already a higher diversity than the solutions found by NSGA.
Here the utilization varies between about 38 % and 68 %. Also the average weighted
response times for all users and all user groups vary of several magnitudes.

The quality of the achieved solutions was increased by changing the mutation op-
erator as not only neighboring elements were exchanged but jobs could move for a
number of jobs. This reflects the characteristics of the underlying scheduling problem
as some jobs should be moved so that several later jobs can overcome this job in order
to increase the scheduling quality for certain objectives.

In the following, NSGA-II was used with a subset of the deterministically gener-
ated start generation (121 solutions) and the changed mutation operator. The subset of

20



0

10

20

30

40

50

60

70

0 5000 10000 15000 20000 25000

Average Weighted Response Time in 1000 seconds

U
ti

li
z
a
ti

o
n

in
%

Workload

Waiting Queue

Fig. 9. Utilization versus AWRT of the start solutions generated by the permutations of the whole
workload (Workload) and the local waiting queue. The CTC workload was used.

the initial solutions is the set of schedules that is generated by 5! permutations of the
corresponding jobs of the five user groups and the original job sequence. The number
of solutions and the diversity increased. Obviously the introduced elitism is necessary
to generate better multiobjective solutions. Furthermore, the results demonstrate the ad-
vantage of using the crowding distance sorting within NSGA-II in comparison to the
sharing method used in NSGA. The crowding distance sorting method results in a better
diversity of the whole population. This is especially true for solutions that are not in the
non-dominated set. A higher diversity in such regions results in a better diversity of the
non-dominated solutions in later generations. Nevertheless, the overall number of found
non-dominated solutions was small at around 100. The diversity of the non-dominated
set was also small. Therefore, we applied three modifications to the system. First, we
restricted the direction of the mutation in the way that jobs can only be moved into the
direction of the end of the sequence. Another change that was motivated from the pre-
vious simulation results is the deselection of the recombination through the EMOA as
all results which were created using recombination were of low quality. Furthermore,
the usage of good starting solutions was helpful to improve the quality of the solutions.
Nevertheless, a widely spread front of non-dominated solutions could not be processed.
Therefore, multiple copies of the original job sequence were used as the only start solu-
tions instead of the deterministically generated job sequences. All three modifications
were applied to the NSGA-II algorithm. This did not affect the number of found solu-
tions, but the diversity increased. The last additional modification that was applied to
the NSGA-II algorithm was the selection of jobs to move. Here two restrictions were
introduced as only jobs with a requested number of processors of 32 and/or jobs with a
requested run time of more than 1 hour were moved. We applied both, the "and" and the
"or" condition. This increased the diversity of the achieved results again. This reflects
the influence of those jobs with a higher resource demand on the resulting scheduling
objectives.
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Fig. 10. AWRT versus AWRT 1 of the start solutions generated by the permutations of the whole
workload (Workload) and the local waiting queue. The CTC workload was used.

Nevertheless, the number of found non-dominated solutions and the achieved diver-
sity were not good. The final set only consists of solutions with 66 or 67 % utilization
and the AWRT do not vary much in comparison to the given start solutions.

The results for the second approach by dynamically modifying the waiting queue
with a real value coded Evolutionary Algorithm are presented in Figures 12 and 13. As
stated already, the influence of this attempt is limited as only a limited number of jobs
are reordered. As a result, the utilization does not vary much and is constant at about
66 %. However, the diversity of the overall AWRT and the average weighted response
times of all user groups is of a high quality. Figure 12 represents the relative outcome of
a special user group (here user group 1) to all users for the AWRT. Here, the AWRT 1
has a lower bound of about 50,000 seconds. The overall AWRT does not have such a
clear bound. The comparison of the average weighted response time between two user
groups presents a well generated Pareto front as it can be seen in Figure 13. For both
representative user groups a clear lower bound can be observed.

The diversity of the starting solutions is higher than the diversity of the solutions
generated by the parameter value coded approach. Nevertheless, the second approach
has a much better diversity than the first attempt. Additionally, all solutions are in the
"most" interesting area with a high machine utilization but a higher variation of waiting
times between the different user groups. Furthermore, the second approach provides
about 13,000 non-dominated solutions and therefore highly covers the solution space in
this restricted area.

The final approximated Pareto set is generated by using all solutions of the NSGA,
NSGA-II and the real-value coded approach as well as all starting solutions. The ap-
proximate Pareto set is calculated using all those solutions. Figures 14 to 16 present this
set which consists of about 14,000 solutions. Again, the axis for the average weighted
response times are scaled logarithmic. For all objectives the front has an acceptable di-
versity as the parameters for the waiting times are varying between several magnitudes
and the utilization is covered between about 38 and 67 %. This set is used for the final
development of an adapted Greedy scheduling.
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Fig. 11. Comparison of the AWRT 1 and AWRT 2 of the start solutions generated by the permu-
tations of the whole workload (Workload) and the local waiting queue. The CTC workload was
used.

Table 4 summarizes all results. The deterministic permutation of the whole work-
load and the local waiting queue produce 540 non-dominated solutions each. The over-
all performance of the permutation coded Evolutionary Algorithms is very low in com-
parison to the real value coded approach. However, the NSGA-II algorithm performs
better than NSGA and the applied modifications increase those effects. The real value
coding solves the problem of generating the approximation to the Pareto front best. Here
the number of found solutions is very high. Therefore, this strategy should be applied
in such high dimensions and with workloads of a similar size.

Results for the Development of an Adapted Greedy-Scheduling This report does
not present the results for the development of an adapted Greedy scheduling as this step
is still in progress. Corresponding results will be published soon.

5 Conclusion

This paper presents a methodology to automatically generate an adapted scheduling
algorithm based on the machine owner preferences. To this end, the space of possible
scheduling solutions was explored by using multiobjective Evolutionary Algorithms.
Exemplarily a solution space of seven dimensions was created. This is the first attempt
to generate the Pareto set of possible solutions with seven dimensions using real work-
load traces.

The paper presents two ways for the generation of the approximate Pareto front and
compares the achieved results. During the usage of well-known multiobjective Evolu-
tionary Algorithms several observations were made. In the presence of scheduling with
workload traces of about 300,000 jobs and seven objectives and a restricted number of
5,000 evaluations it is not possible to use the Evolutionary Algorithms as a black-box
optimization tool. Instead, problem specific knowledge has to be incorporated into the
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Fig. 12. Comparison of the AWRT and the AWRT 1 using the CTC workload and the real-value
coded approach.
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Fig. 13. Comparison of the AWRT 1 and AWRT 2 using the CTC workload and the real-value
coded approach.

variation operators. For example it is necessary to restrict the type of jobs that are moved
during the mutation as well as to determine the direction of the mutation. Furthermore,
the usage of recombination can not be recommended.

Furthermore, this paper demonstrates that the applied Evolutionary Algorithms need
acceptable start solutions. Otherwise they are not able to find appropriate solutions
within the restricted number of evaluations.

The paper demonstrates the known advantage of combining the elitist selection and
the crowding distance sorting implemented in NSGA-II compared to the used NSGA.

From the scheduling point of view it seems to be more promising to vary the weight-
ing parameters for jobs in the waiting queue instead of directly modifying the sequence
even noticed that by this procedure not all possible job sequences can be generated.
The variation of whole workload traces does not work well as the number of jobs in
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Fig. 14. Utilization and AWRT of the final results for the CTC workload trace.
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Fig. 15. AWRT and AWRT 1 for the final results for the CTC workload trace.

combination with the higher dimensions of the objective space is still too complex to
be solved with Evolutionary Algorithms within the restricted number of evaluations.

The created space of possible solutions represents the foundation to generate an
adapted Greedy scheduling algorithm. The corresponding results will be presented soon.
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Final Pareto Set for the CTC-Workload Average Weighted

Response Time 1 versus Average Weighted Response Time 2
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Fig. 16. AWRT 1 and AWRT 2 for the final results for the CTC workload trace.
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Table 4. Summarized evaluation results. MJL =̂ Mutation Jump Length. MJN =̂ Mutation Jump
Number. StS =̂ is the number of start (initial) schedules. NoS =̂ number of non-dominated solu-
tions. FC =̂ function calls, which is equal to the number of generated schedules.

Representation Evolutionary
Multiobjec-
tive Algo-
rithm

Mutation Adaptation Recombi-
nation

StS NoS FC

Workload Per-
mutation

- - - - - 540 540

Queue Permu-
tation

- - - - - 540 540

Permutation
Coded

NSGA MJL=1,
MJN=5,000

- 0.3 121 3 24,000

Permutation
Coded

NSGA MJL=4,000,
MJN=5,000

- 0.3 121 1 24,000

Permutation
Coded, All
NSGA Results

NSGA - - - - 3 48,000

Permutation
Coded

NSGA-II MJL=4,000,
MJN=5,000

- 0.3 121 106 24,000

Permutation
Coded

NSGA-II MJL=1,500,
MJN=5,000

Movement of jobs
towards the end.

0.0 1 108 30,000

Permutation
Coded

NSGA-II MJL=1,500,
MJN=5,000

Randomly cho-
sen user group.
Movement of
jobs (with 32
processors and/or
1 hour run time)
of other groups
towards the end.

0.0 1 125 30,000

Permutation
Coded, All
NSGA-II
Results

NSGA-II - - - - 131 84,000

Real Value
Coded

NSGA-II Polynomial Real Value Coded SBX - 12,832 20,000

Final Solution - - - - - 13,954 153,080
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