
On Grid Performance Evaluation

using Synthetic Workloads

Dick H.J. Epema1, Carsten Franke2?, Alexandru Iosup1, Alexander
Papaspyrou2, Lars Schley2, Baiyi Song2, and Ramin Yahyapour2

1 Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology, The Netherlands

{D.H.J.Epema,A.Iosup}@tudelft.nl

2 Information Technology Section, Robotics Research Institute
Dortmund University, Germany

{Carsten.Franke,Alexander.Papaspyrou,

Lars.Schley,Song.Baiyi,Ramin.Yahyapour}@udo.edu

Members of the CoreGRID European Virtual Institute on Grid Resource
Management and Scheduling

Abstract. Grid computing is becoming a common technology platform
for solving large scale computing tasks. However, a number of major
technical issues, including the lack of adequate performance evaluation
approaches, hinder the Grid's further development. The requirements
herefore are manifold; adequate approaches must combine appropriate
performance metrics, realistic workload models, and �exible tools for
workload generation, submission, and analysis. In this paper we present
an approach to tackle this complex problem. First, we introduce a set of
grid performance objectives based on traditional and grid-speci�c perfor-
mance metrics. Second, we synthesize the requirements for realistic grid
workload modeling, e.g. co-allocation, data and network management,
and failure modeling. Third, we show how GrenchMark, an existing
framework for generating, running, and analyzing grid workloads, can be
extended to implement the proposed modeling techniques. Our approach
aims to be an initial and necessary step towards a common performance
evaluation framework for grid environments.

1 Introduction

Grid computing facilitates the aggregation and sharing of large sets of hetero-
geneous resources spread over large geographical areas. This proves bene�cial
in many situations, for example when applications require more resources than
locally available, or when work needs to be balanced across multiple computing
facilities [15]. With the industrial and scienti�c communities tackling increas-
ingly larger problems, grid computing is becoming a common infrastructural

? Born C. Ernemann.

solution, and is starting to replace traditional parallel environments. However,
key features of grids are still ardent research subjects, e.g., sophisticated resource
planning strategies or the adaptation of existing applications to grids. Many of
these features require in-depth knowledge of the behavior of grids, and realistic
performance evaluation and comparison of existing and new approaches.

Grid performance evaluation raises very di�erent challenges for the proce-
dure and the adoption aspects. Also, the motivation of an evaluation may have
a major impact on the approach that is taken during the evaluation itself. The
various existing approaches to tackle the performance evaluation problem in the
area of parallel environments [26, 49] cannot be directly applied in grids, due
to the grids' dynamic and large-scale nature. Other grid-oriented approaches,
though valuable, either do not use realistic workloads [9] or use non-validated
measurement data as input for the evaluation process [35], and cannot be used
for reliable system comparisons and evaluations, cf. [7, 23, 11]. Furthermore, the
actual adoption of an evaluation procedure as a benchmark is a community ap-
proach which requires the agreement of a su�cient number of grid stakeholders;
this hinges on the existence of one or more established procedures, currently
lacking in grids.

Besides that, performance evaluation and comparison require the existence
of workload traces within a grid, which at the moment simply do not exist.
To ameliorate the lack thereof, synthetic, generated on the foundation of an
appropriate model, that is, workloads are used for evaluation purposes. The
main and, in fact, very hard problem is obviously to create a good model without
having any workload instances (real system traces, that is). While there exist
good models in the parallel processing community, there is no comprehensive
workload model for grids available.

This paper aims to provide a starting point for grid performance evaluation
from a practical point of view: a selection of requirements, objectives, and guide-
lines (including both well-known metrics from parallel workload modeling and
newer, more grid-speci�c measurement gauges) is suggested to give an overview
of what could be considered within a Grid performance evaluation system, and
steps towards a common framework for adoption in real-world environments for
the purpose of veri�cation, analysis and benchmarking are shown. Our main con-
tribution is thus twofold: (1) our approach is the �rst to deal programmatically
with di�erent critical grid modeling issues like co-allocation, job �exibility, data
management, and failures; and (2) we gauge our approach as a standardization
e�ort, by providing the necessary theoretical framework, and an early toolset to
work with it.

The remainder of the paper is organized as follows. Section 2 presents three
di�erent evaluation scenarios. Section 3 analyzes a set of typical performance ob-
jectives which are commonly used in grids. Sections 4 and 5 focus on the features
and requirements for modeling workloads for grids. While the modeling aspects in
Section 4 contain strong links to existing work from the High-Performance Com-
puting (HPC) community, Section 5 discusses in detail a selection of six grid-
speci�c aspects: computation management, data management, locality/origin

management, failure modeling, and economic modeling. Section 6 describes the
GrenchMark system, its current status, and the foreseen extensions towards
the additional requirements presented in this paper. The discussion in Sections
4 and 5 acts as a guideline for added functionality to the GrenchMark frame-
work. We conclude with a brief summary and a preview of our future research
in this area, in Section 7.

2 System Scenarios

The common de�nition and proposed visions for grids go in the direction of a
large-scale heterogenous computing platform with varying resource availability.
This inherently dynamic and distributed nature is the root of the speci�c problem
of evaluating grids: the sheer size and the dynamic behavior of grids renders
di�cult the evaluation of their performance. In this context, two questions need
to be answered: 1. What is the actual scenario for which performance evaluation
is done? and 2. What kind of performance objectives are sought after?

Clearly, a single evaluation system will not be able to ful�ll all needs. For
example, performance evaluation in simulated systems can be done by restrict-
ing the environmental description to a few3 parameters (the number of clusters
and of machines, the machine's speed distribution etc.) and allows the analy-
sis of long-term usage as well as non-typical con�gurations. Simulated systems
are, however, restricted to whatever the simulation designer has considered, and
their results should not be seen as actual performance values, but more as in-
dicators towards them. In contrast, the use of an actual grid system allows the
derivation of current system data on the performance, stability, and usability
of a real installation. Still, long-term assessments are inherently di�cult, due
to the non-exclusive access to the system itself or its con�guration. Moreover,
the evaluation produces results that are di�cult to reproduce, even in the same
scenario. To avoid the disadvantages of the previous two scenarios, emulated sys-
tems come into place: here, a high-accuracy simulation is done, and performance
evaluation is occurs just like in a real environment. This, of course, requires the
representation of the simulated infrastructure to match as closely as possible the
technical description of the system to be emulated, which leads to a trade-o�
between the achieveable precision and the evaluation speed. Furthermore, the
emulated environment needs to run itself on top of a large-scale distributed sys-
tem. While the theoretically reachable precision of the evaluation results is very
high, it is extremely di�cult to prove the correctness of the emulation due to
the combinatorial explosion of parameter values that can be varied.

We assume that all three approaches, simulation, emulation, and real system
testing, are of signi�cance in their domain. Thus, a performance evaluation sys-
tem should ideally (a) support all of them and (b) allow a comparison of results
on a technical level.

3 Of course, the description of the simulation environment can also in�uence evalua-
tion, but this discussion is out of the scope of this work.

Nevertheless, the applied workload and job models, as well as the underlying
grid model, are crucial for the evaluation. It is clear that, in a scenario in which
a scheduling and management strategy for grids is quantitatively analyzed, the
applied workload and the examined grid con�guration are highly dependent. If
for instance the requested load extends the system's saturation level, more and
more jobs will be queued over time: the wait time for users will increase over
time to an unrealistic level, which destabilises many performance objectives and,
in the end, makes the results from such evaluations mostly useless. As a counter
example, if the requested load is signi�cantly lower than the saturation level,
the scheduling problem degenerates to trivial job dispatching. Due to the strong
dependence between a grid con�guration and the applied workload, evaluation
is very complex, as it is not possible to re-use the same workload for grid con�g-
urations which deviate largely in performance. One solution to the problem can
be the dynamic adaption of workload generation based on the grid performance.
However, such an approach has high impact on the performance objectives that
can be assessed. We will investigate this problem in more detail in Sections 4
and 5.

3 Performance Metrics

The evaluation of the Grid performance highly depends on the given scenario
(see Section 2), and the provider and user objectives. However, some typical
standard evaluation metrics exist that can be applied in most cases. In this
section we shortly present many of these metrics, and propose a selection of
metrics for general purpose use.

Although we base the evaluation of grid systems on the seminal work in the
context of parallel production environments by Feitelson et al. [24, 23], our nota-
tion is in some cases modi�ed according to the standards de�ned for operational
research scheduling by Graham et al. [27]. For an overview of this notation we
refer to [41]. Rooting our work in these approaches enables us to build on estab-
lished results, and to have a good base of comparison with previous performance
evaluations.

Within the Grid we assume m machines4 and a job system τ . Within the
system, each job j ∈ τ can further be divided into tasks k ∈ j. The number of
jobs in the system is | τ |; the number of tasks for job j is | j |. Sometimes,
such tasks are modeled as individual jobs that are connected by precedence
constraints; especially then, the tasks of a job j are not executed in parallel.

Each job j and all its corresponding tasks k ∈ j are released at time rj . Grids
typically work in an online scenario, that is, rj is not known in advance for most
jobs and tasks. As they arrive, jobs are scheduled to run, that is, a suitable set
of resources is allocated for the future job run. For rescheduling capabilities, we
de�ne the �nal schedule for a period of time T as the schedule of all jobs arriving
during time 0 and time T in which no job can be further rescheduled.

4 Note that this term is used loosely and may specify any type of resource.

3.1 Time-, Resource- and System-Related Metrics

Within the �nal schedule S, the task k ∈ j is completed at time Ck(S). Hence,
job j leaves the system at time Cj(S) = max

k∈j
Ck(S). The processing time of

task k ∈ j is pk. Hence, the processing time pj of job j can be calculated by
Cj(S)−min

k∈j
(Ck(S)− pk). Besides the maximum lateness Lmax = max

j∈τ
(Cj(S)−

dj), which may be used as an analysis criterion (and needs to be minimised for
grid systems), the number of tardy jobs TJ =

∑
j∈τ∧Cj>dj

1 also is of interest,

as it provides information about the number of user requests that could not be
ful�lled.

The resource consumption RCk of a task is de�ned by the product of the
corresponding processing time and the used machines (RCk = pk · mk). Conse-
quently, we can de�ne the resource consumption of a job by RCj =

∑
k∈j

RCk and

of a whole schedule by RC(S) =
∑
j∈τ

RCj . Using this total resource consumption

we can also de�ne the utilization U of the available machines, see Equation 1.
The resource provider usually5 selects as objective the maximization of the sys-
tem utilization.

U =
RC(S)

m · (max
j∈τ

Cj(S) − min
j∈τ

(Cj(S) − pj))
(1)

With task execution failures being common in grids (see Section 5.6), jobs
may fail during execution, and be run several times before they successfully
complete. We therefore de�ne the true resource consumption RC{k, j}true and
the true utilization U true as corollaries respectively, so that also the failed job's
consumption of resources is measured. The sum of the resource consumption
of such faulty jobs is de�ned as the waste metric WASTE = U true − U , which
gives a hint on the dynamic reaction to failures of the grid system and is to be
minimized by the resource owner.

As grid systems are belonging to several stakeholders, measuring the fairness
of use is becoming an interesting point. A possible, but rather simple metric
for measuring resource use fairness is the average wait time deviation [44], as
de�ned in Equation 2; here, the objective is to minimize the AWDT for each
grid stakeholder.

AWTD =
1

| τ |

√∑
j∈τ

(WTj)2 − (
∑
j∈τ

WTj

| τ |
)2 (2)

5 In some cases (when certain users or user groups are willing to pay for the utilisation
of a machine or have an a�liation to a certain organisation, etc.), the utilization
might be of less importance.

3.2 Workload Completion and Failure Metrics

In nowadays grids, the ability to complete the execution of a given workload
can be even more important than the speedup obtained through this execution6.
Grids require the rede�nition of the application failure notion: a grid application
which was not able to �nish successfully within its budget generates an applica-
tion failure event upon the �rst detection of its inability to complete successfully.
For example, an application fails if its requested computation resources cannot
be found, because of having a deadline assigned, but exceeding it, or because of
running out of credits (even during execution). Using this notion, fault tolerance
becomes postponing the application failure as much as possible, while there are
realistic chances of �nishing the application, possibly to the point where the ap-
plication �nishes successfully. In this section we describe metrics pertaining to
workload completion and failures.

We propose as a metric the workload completion (WC), computed as given
by Equation 3. This helps to identify the limitations of the grid system, and
its maximization should be used as a major objective both by the user and by
the resource owners. However, the workload completion has limitations from the
resource owners' point of view, as jobs with a smaller number of tasks have a
higher in�uence on this value. As complementary metrics, we propose the task
completion (TC), given by Equation 4, and the enabled task completion (ETC),
given by Equation 5. Note that in the latter the enabled tasks are those tasks
which can be run, after their previous tasks dependencies have been completed.
The resource owners' objective is to maximize the enabled task completion. If
the TC and the ETC metrics di�er greatly, special care must be taken by the
resource owners to ful�ll critical tasks (tasks which are present in the dependency
lists of many other tasks), for example by automatically launching redundant
runs of these tasks.

WC =

∑
j∈τ∧j completed

1

| τ |
(3)

TC =

∑
j∈τ∧k∈j∧k completed

1∑
j∈τ

| j |
(4)

ETC =

∑
j∈τ∧k∈j∧k completed

1∑
j∈τ∧k∈j∧k enabled

1
(5)

We further propose as a metric the system failure factor (SFF), as the ra-
tio between the number of failures observed for all the tasks that were started
and the number of tasks that were started. Note that SFF is equal to 1 − ETC

6 Note that the jobs executed in grids may be much more complex than the jobs
executed in traditional parallel environments, e.g., work�ows vs. batches of jobs.

for a system with no retry capabilities, but may vary greatly otherwise. The
SFF metric may be an e�ective performance evaluator for the ability of the grid
system to detect and correct failures in the system, e.g., if a resource becomes
unavailable, repeatedly sending jobs to it for execution would increase the num-
ber of observed failures, and prove a lack of dynamic response to partial system
failures. The objective of the resource owner is minimize the value of the SFF
metric. Note that it is possible to have a high value for the waste metric and a
small value for the system failure factor at the same time, for instance when a
few tasks fail, but their failure occurs or is observed after the tasks have been
running for an extensive period of time. Besides this system-oriented metric,
the expected task failure, that is, the probability that a task will fail upon being
run, may be used to evaluate the performance of grids where the availability of
resources is very dynamic [35].

3.3 Metrics Selection

Given the number of proposed metrics, the selection of an appropriate subset is
still an open question. Recent works by Feitelson et al. show that all quantitative
metrics should be reported and considered for a representative systems evalua-
tion [21, 22]. Therefore, a scheduling performance evaluation could be done after
considering the detailed resource consumption report, and the following afore-
mentioned metrics: the system utilization U, the workload completion percent-
ageWC, the enabled task completion ETC, the wasted resourcesWASTE, the
system failure factor SFF, and the average wait time deviation AWTD. Besides
that, we also consider the response time AWRT, the wait time AWWT, the
slowdown AWSD, (all average), all used in their weighted versions, by which
all jobs with the same resource demand have the same in�uence on the sched-
ule quality. Without the weighting mechanism, a job using few machines would
have the same impact on these metrics as a job that uses many machines, see
Schwiegelshohn et al. [43]. To prevent this e�ect, bounds can be imposed for these
metrics, e.g., bounded slowdown [24]. Speci�c time-based summaries of the con-
sumption report and the nine metrics are sometimes needed, e.g., for normal,
peak, and clear months, or for week days and week-end. Di�erent providers will
then be able to weight those metrics according to their system use scenario.

In some cases, metrics need also be computed per user or per user group,
in addition to metrics for the full system. This may be needed, for example,
for grids where the machine providers have di�erent commercial relationships to
di�erent grid participants, and therefore speci�c objectives for di�erent users or
user groups [2]. An early example is the fair-share utilization concept used in
the Maui scheduler [31], where separate policies are de�ned for di�erent users
and groups.

4 General Aspects for Workload Modeling

Most research on workload modeling for single HPC parallel computers focus on
the characterization of the overall features of workloads. Since the evaluation of

scheduling strategies for parallel computers focus on the optimization of a global
performance metric, like to minimize the overall response time, or the makespan
or to increase machine utilization, a general descriptive model is often su�cient
for workload modeling [37, 10]. Here, a collection of probabilistic distributions
are sometimes suitable for various workload attributes (e.g. runtime, parallelism,
I/O, memory). By sampling from the corresponding distributions, a synthetic
workload is generated. The construction of such a workload model is done by
�tting the global workload attributes to mathematical distributions.

In a grid environment the scheduling objectives depend more on the individ-
ual choice of the users. Here, some users may prefer the minimization of cost,
while others accept a longer waiting time in favor of a better quality of service,
e.g. more or faster processor nodes available. Therefore, a di�erent knowledge of
the workload characteristics is needed for a realistic evaluation of grid systems.
Unfortunately, there is currently no actual grid workload trace publicly avail-
able, such that only assumptions can be made about the actual use of grids. For
the time being, it can however be assumed that the current user communities
from HPC sites are at the forefront of using grids. Thus, we argue that model-
ing techniques that have been employed for HPC traces can be (at least partly)
applied also in the case of grids, and that existing workload traces taken from
parallel computers at HPC sites may be useful as a �rst start for modeling grid
workloads. Within the context of this assumption, the 17 HPC traces from the
Parallel Workloads Archive7 provide valuable modeling data. In this section we
present the general aspects of HPC workload modeling.

4.1 User Group Model

While it is clear that the individual users' characteristics need to be emphasized
in grid environments, the main challenge in the construction of a group and/or
user model is to �nd a trade-o� between two extremes: the summarization in a
general probability model for all job submissions on the one hand, and unique
models which are created for each user based on information about her past
actions on the other. We further address the dimensions of the required modeling
e�ort.

We call a set of users or a set of groups dominant if it covers the majority
of jobs and is responsible for the majority of consumed resources (from hereon,
squashed area, or SA). When the size of the dominant set of groups or users
is reduced, e.g., less than 10, the detailed modeling approach may be used.
In [36], the top-5 groups and the top-10 users form dominant sets, respectively,
and unique models for each group and user are created. However, this approach
does not scale for larger communities, e.g., using hundreds of distributions for
di�erent users. In this case, the approach su�ers from two signi�cant problems.
First, there is usually not enough information available for all users, as some
only have a few job submissions. Second, the overall number of parameters will
be quite large so that the interpretability and scalability of the model is lost.

7 Available at http://www.cs.huji.ac.il/labs/parallel/workload/.

Fig. 1: Dominant set of groups of size 2 for the KTH workload.

As a consequence, a trade-o� on the level of user groups is anticipated. That
is, users are clustered into groups with similar but distinct submission features.
This user group model allows to address the user submission behaviors while
maintaining simplicity and manageability.

In [46] such a user group model has been proposed which clusters users into
groups according to their job submissions in real workload traces. The analysis
showed that for the examined workload, there exists a dominant set of groups of
size 4. If the clustering would be even more pronounced, a dominant set of size 2
can be found, with the �rst group covering more than 95% of the squashed area
(see Fig. 1).

In the presented research work, the analysis and modeling was restricted
to the job parameters run time and number of requested processors which were
su�cient for single parallel computer scheduling. However, modeling on the level
of these groups provides the possibility to assign additional workload features,
e.g. necessary for grids, to these groups. Some examples of such additionally
required features are discussed in Section 5.

4.2 Submission Patterns

The users of grids have their own habits to request resources and to submit jobs,
which is referred to as patterns. Here, we take the daily cycle as an example.
The daily cycle could refer to the habit of submitting more jobs during day time
than night, and to the considerably distinct submission distributions during the
day and the night. Fig. 2 shows the daily arriving patterns of jobs, for the
KTH workload. There is an obvious daily cycle: most jobs arrive during the day
and only a few of them at night. Obviously, these patterns might blur in grid
environments because of users living in di�erent timezones [16]; however, they
are still important to the local sites (and the local schedulers).

Fig. 2: Job arrivals during the daily cycle.

Similar patterns can be found through the week, e.g., users tend to submit
more jobs during the week-days than during the week-end, or year, e.g., an
outstanding increase in the number of job submissions may be observed during
several months of the year [36], or during short periods [8].

These e�ects can be described by classical statistical methods. For exam-
ple, Downey [12] modeled the daily cycle using combined Poisson distributions;
Calzarossa [6] found that an eight-degree polynomial function is a suitable repre-
sentation of all the analyzed arrival processes. However, this does not necessarily
hold because of dependencies within the workload (see [18, 17]), e.g. sequential
dependencies.

Therefore, temporal modeling is an important aspect. For example, one of
these temporal e�ects is repeated submission [18], namely, users do not submit
one job once but several similar jobs in a short time frame. Even if the succes-
sively appearing jobs are disregarded, temporal relations can still be found, as
shown in [17]. It can be seen that the successors of jobs with a large parallelism
value also tend to require more nodes.

Such temporal characteristics are useful for the many grid scheduling scenar-
ios, including resource reservation and load balancing. The application of vari-
ous techniques, e.g., stationary and non-stationary analysis as well as stochastic
processes, provides a good representation of the temporal relations in users'
submissions. In [45], correlated Markov chains are used to model the temporal
characteristics of job sequences. The idea to correlate the Markov chains is that
since the job parameters are correlated, the transformations of their correspond-
ing Markov chains are related as well. In [39], a model based on Markov chains
is used for the number of jobs consecutively submitted by a user during a single
submitting session.

Besides that, analysis has shown that users also tend to adapt to the perfor-
mance of the available system. That is, users may change their job submissions
according to the available online information, e.g. system states and quality of
services as shown in [19, 20]. Therefore, it is reasonable to model the users' sub-

missions with the considerations of such feedback behaviors. Thus, the workload
generation should be coupled to the system with a feedback loop.

In many cases, the explicit feedback tags are missing; therefore it is not fea-
sible to determine whether feedback factors do a�ect job delivery. For example,
if a user seldom delivers jobs at noon, it might result from a regular lunch at
this time, or has a real feedback implication: the user �nds many waiting jobs
at noon and then stops his or her submissions.

However, it is possible to elicit whether feedback factors a�ect a job's pro�le
(like parallelism and runtime), since the job pro�les can be compared along
di�erent situations of in�uential factors. To this end, the correlations between
the feedback factors and the job attributes should be analyzed.

5 Grid-speci�c Workload Modeling

In this section we present the grid-speci�c workload modeling requirements. Due
to the lack of publicly available traces8 of real grids operation, we restrict our
presentation to the main characteristics that could become subject of near-future
modeling.

5.1 Types of Applications

Grid jobs may have a complex structure which may be handled only with ad-
vanced support from the submission middleware. From this point of view, we
consider two types of applications that can run in grids, and may be included
in generated grid workloads: i. unitary applications, which include sequential or
parallel (e.g. MPI) applications and at most require taking the job program-
ming model into account (launching additional naming or registry services, for
example) and ii. composite applications, which include bags, chains or DAGs of
tasks and additionally require special attention by the grid scheduler regarding
inter-dependencies, advanced reservation and extended fault tolerance.

Note, in the remainder of this section we use the term application at some
points. By this we understand a certain user problem that has to be calculated.
In this sense, application and job are the same.

5.2 Computation Management

Another grid-speci�c problem is the processor co-allocation, that is, the simulta-
neous allocation of processors located at di�erent grid sites to single applications
which consist of multiple components. Co-allocation models need to describe
the application components and the possible resource co-allocation policies. To

8 There is, of course, one public trace of a HPC site participating in the EGEE/LCG
production grid; however, due to the fact that only the batch system log is avail-
able, but no information whatsoever on the grid infrastructure layer, this workload
degenerates to a standard HPC site trace.

model the application components, we need to de�ne the number of compo-
nents (NoC) and the component size (CS), and furthermore must allow multiple
con�gurations, such that sets of (Noc,CS) tuples or even ranges can be then
speci�ed. In practice, the typical con�gurations for processor co-allocations are
selected such that they �ll completely clusters of resources, to keep the inter-
cluster communication low [4]; load-balancing across the number of sites can
also be used for jobs requiring large numbers of resources [3]. Obviously, there
are three possible resource co-allocation policies: 1. �xed, where each job has
prede�ned resource preferences; 2. non-�xed, where jobs have no resource pref-
erences at all and 3. semi-�xed, where only some job components require certain
resources, whilst others can be dispatched at the scheduler's discretion. Expe-
rience with co-allocation in a real environment is described in [40, 30]. However,
no statistical data regarding the use of co-allocation by real communities of users
is publicly available.

Besides that, job �exibility, that is, the (in)ability of a job to run on a chang-
ing number of resources, raises many more problems in grids than in traditional
parallel environments. Flexibility models need to describe the �exibility type and
(possibly) the number and dynamics of computing resources that may be allo-
cated to a job. There are four possible �exibility types: rigid, moldable, evolving,
and malleable [24]. To model the application �exibility, at least one job shape
(cf. [11], a tuple comprising the minimum and maximum number of comput-
ing resources, the con�guration constraints, e.g., n2 processors, and the resource
addition / subtraction constraints) must be de�ned per job. Statistical data
for moldable jobs for a real supercomputing community is given by Cirne and
Berman [11]; experiments with moldable applications in a real environment have
been presented by Berman et al. [1].

Finally, one has to consider that, in production grid environments, there
often exists a certain background load : many processing resources are shared
with the grid by a local community, and may have local jobs running outside
the grid resource management. Also, it is expected that usage of resources must
di�er greatly depending on the project stage of a certain user community which
generates the usage. Considering a long-term project, there might be a startup
and a transition phase, in which infrastructure and application test are produced,
an execution phase, which contains the main body of work for the project, and an
ending phase, in which jobs with characteristics and submission patterns totally
di�erent from the previous stages might appear. From such a projects' point of
view, the modeler needs to be able to characterize each individual stage.

5.3 Data Management

We now discuss the modeling requirements of data management. Grid jobs need
input data for processing, and generate output data to make the computed
results persistent. The data needs to be present before9 the job can start, and

9 There also exist I/O models that introduce remote data access with read-ahead
and/or caching mechanisms, but these are out of the scope of this work.

the stored results must be fetched after the job has �nished, or streamed as they
are produced. Hence, the modeler needs to specify at least the identi�ers of the
input and of the output �les. For composite applications (see Section 5.1), it is
also necessary to specify data dependencies between the jobs, that is, which of a
job's output �les represent another's input, and which input �les are shared by
several jobs.

Similarly to specifying an estimated computation time or size for their ap-
plications, it would be desirable that users specify an estimation of the needed
input and output space within the job description. Also similarly to the esti-
mated/actual runtime discrepancies, the information speci�ed by the user may
not be reliable and available, e.g., the user provides imprecise estimations or the
job determines result data sets during runtime. We argue that such information
can be added easily, as many applications have well-studied I/O requirements,
both when running individually, or when running in batches [47].

For many applications, data is obtained from remote large-scale storage de-
vices, usually with very di�erent access times than the locally available data.
Additionally, unexpected di�culties can occur regarding the access time for �les
which appear to be locally available, i.e., �les might seem to be accessible on
a local �lesystem but essentially have been moved to tertiary storage. This is
especially the case for HSM10 systems, where the restoration of �les can take a
long time. In this case, a model should provide detailed information about the
source and destination storage, for the input and output �les, respectively.

Sometimes, the same �le is replicated on several storage sites in the grid.
Modeling this aspect can be reduced to specifying lists of input and/or output
�les locations for each unique �le identi�er. Note that the information in the list
may need to be combined with information on the data storage device.

5.4 Network Management

When introducing data management into workload models for grids, it is obvious
that also networks between sites have to be considered. The available bandwidth
for transfers of input or output data is limited and thus has an impact on the
data transfer time. This can in�uence the decision which site is used for a cer-
tain computation and whether data has to be replicated to this site in order
to run the job. There are also other application scenarios in which network
management is a critical feature, like the management of bandwidth in Service
Level Agreements between remote resource allocations, e.g. for parallel compu-
tation, large-scale visualization, or consistent data streaming from experimental
devices [25]. Therefore, the end-to-end bandwidth between di�erent nodes in the
grid must be described and managed.

Ideally, the total bandwidth of every end-to-end connection would be known
and dedicated reservations could be enforced. However, this is often not sup-
ported: in IP networks, end-to-end connections are virtual (since the packet
route can change) with a maximum weakest-link-in-chain bandwidth. Hence, in

10 Hierarchical Storage Management.

many realistic scenarios often no precise information about the service quality
between two ends is available. However, there are means which can ameliorate
this situation. For example, the NWS system [50] measures and records the
available bandwidth between two nodes periodically. This data is then used to
predict the expected average bandwidth in the future based on historic patterns.
In cases where reservation of bandwidth is not feasible, there are still possibilities
to shape network tra�c. However, abiding agreements on an certain QoS level
cannot be settled normally. Regarding network latency, which is important for
applications requiring large numbers of small network packets (e.g. streaming),
the situation is akin.

Besides that, there is always a certain amount of background (not grid
workload-related, that is) tra�c on a network, which lowers both bandwidth and
latency. However, due to the lack of reservation capabilities, the impact of back-
ground tra�c is not predictable at all. Even when predictions expect high net-
work availability and the known future utilization is low, a single data-intensive
�le transfer can suddenly produce a high, previously unexpected network load.

On the whole, realistic network depiction in workload models is di�cult and
will have to be subject to further research; �rst steps into the direction of grid-
speci�c data staging and network modeling have been taken in the SDSC HPSS
work [42] and Tan et. al [48]. However, it would be useful that a grid performance
evaluation system provides support for network resources and consequently for
network related workload requirements in order to have a testing platform for
future models. Such an extension would include the addition of network informa-
tion and requirements to jobs as well as evaluated grid con�gurations on which
the workload is executed.

5.5 Locality/Origin Management

Another requirement for some evaluation scenarios in grids is the realistic mod-
eling of the origin of job submissions. While some may argue that grid workload
is created decentralized and on a global scale, many usage scenarios still need in-
formation about the locality of job creation. A typical example of such a scenario
is the collaboration between HPC centers which want to share their workload
to improve quality of service to their local user community. While the sites may
agree on sharing the workload, it is quite common that certain policies or rules
exist for this sharing (balancing between local and "foreign" users, for instance).

Other examples can be conceived, in which the submitting user plays a role,
as he may belong to a certain virtual organization and may have subsequently
special privileges on certain grid resources [31]. Support for these scenarios can
be helpful for P2P grids, where resource access is mostly user-centric and not
dependent on a particular site policy.

5.6 Failure Modeling

Due to the natural heterogeneity of grids and their sheer size, failures appear
much more often than in traditional parallel and distributed environments, occur

at infrastructure, middleware, application, and user levels, and may be transient
or permanent. Furthermore, di�erent fault tolerance mechanisms can be selected
by the user, for each job or work�ow in the workload. Hence, the modeler must
use a dynamic grid model, combined with a realistic failure model. Then, she
must take into account the fault tolerance mechanisms, i.e., the failure response
mechanism selected by the user or employed automatically by the system. Fur-
thermore, experiments such as comparing two middleware solutions may require
deterministic failure behavior.

Failures in the grid infrastructure may be caused by resource failures (e.g.
node crashes), or by other resource outages (e.g. maintenance). To model re-
source failures, the traditional availability metric, mean-time to failure [32], the
length of failure (failover duration), and the percentage a�ected from the re-
source, must be speci�ed for each resource. To model other resource outages,
the following parameters must be speci�ed: outage period, announced and real
outage duration, percentage a�ected from the resource a�ected, and (optional)
the details of the failures, e.g., which resources or resource parts did fail [7].

Failures in the grid middleware may have various causes. One source of errors
is the scalability of the middleware; another is due to the middleware con�gura-
tion: according to the survey in Medeiros et al. [38], 76% of the observed defects
are due to con�guration problems. For modeling purposes, starting points could
be static mechanisms like mean-time to failure, and the length of the failures,
again.

Regarding failures in grid applications, it has been observed by Kondo et
al. [35] that jobs submitted during the weekend are much more error-prone.
Therefore, an application failure model should contain a fault inter-arrival time

distribution.
User-generated failures can be modeled similarly to the distribution of the

jobs' inter-arrival time. Faults due to user-speci�ed job runtimes have been a
topic of interest in parallel workload modeling, other issues like missing or expired
credentials and disk quota overrun [9, 13, 30], invalid job speci�cations [34] or
user-initiated cancellations [10] are other sources of user-generated failures.

To respond to the numerous sources of failure, various fault tolerance schemes

may be applied in grid, and possibly need to be modeled (see for example [28]);
the technique type then needs to be speci�ed for each job or work�ow in the
workload, coupled with the speci�c technique parameters.

5.7 Economic Models

There is a lot of discussion on the connotation of access to grid resources not
being free of charge [33, 14, 5]. Especially the support for commercial business
models will include support for economic methods in grids. Therefore, it is clear
that the allocation of jobs to resources may incur cost in certain grid scenarios.
Adopting cost has many implications to the allocation of jobs to grid resources:
providers will require the implementation of pricing policies for the access to
resources. To the same extend, users will need support for managing budgets for
job executions and preference constraints on how jobs should be executed (e.g.,

price vs. performance). First economic models have been published by Ernemann
et al. [14] and Buyya et al. [5].

While it is not the task of an evaluation system to tackle the technical impli-
cations of economic models, like whether cost occurs in virtual credits or actual
money, it can be conceived that there are requirements to model budget infor-
mation for either jobs, users or virtual organizations. This is even necessary if
grids are modeled in which users or groups have a certain quota on resources; a
precondition to optionally support budget constraints in the evaluation system.

Another step could be the support for di�erent optimization goals that are
economy-related. For instance, users may prefer a cheaper (in terms of cost)
execution of a job in contrast to an early execution. This, however, requires
the extension of the performance metrics to include cost-related parameters,
in a possibly parametric fashion. For example, in Ernemann et al. [14], grid
users provide parametric utility functions, and the systems performs automated
request-o�er matching.

6 GrenchMark: A Framework for Grid Performance

Evaluation

GrenchMark is a framework for synthetic grid workload generation, execution,
and analysis of execution results. It is extensible, in that it allows new types of
grid applications to be included in the workload generation without a change in
the design, parameterizable, as it permits the user to parameterize the workloads
generation and submission, and �exible, as it can be used for analyzing, testing,
and comparing common grid settings. GrenchMark is currently developed at
TU Delft11.

6.1 Current Features

In our previous work we have shown how GrenchMark can be used to generate
and submit workloads comprising unitary and composite applications, to replay-
scale-mix traces from the Parallel Workloads Archive, and in general to analyze,
test, and compare common grid settings [29, 30]. Therefore, we only point out
prominent features, and invite the reader to consult our work.

GrenchMark o�ers support for the following workload modeling aspects.
First, it supports unitary and composite applications as well as single-site and
co-allocated jobs. Second, it allows the user to de�ne the job submission pattern
based on well-known statistical distributions. Third, it allows the workload de-
signer to combine several workloads into a single one (mixing). This allows for in-
stance the de�nition of separate user groups (see Section 4.1), further combined
into a single grid workload. Furthermore, it supports the generation, storage,
modi�cation, replay and analysis of workloads based on user-de�ned parame-
ters.

11 A reference implementation is available from http://grenchmark.st.ewi.tudelft.nl/.

6.2 Extension Points

GrenchMark has been designed with an incremental approach in mind, and
facilitates future extensions at many levels.

Based on the dynamics of the grid workload generation process, we iden-
tify two types of grid workload generation: statically-generated workloads, and
dynamically-generated workloads. Statically-generated workloads do not change
at execution time with modi�cations in the execution environment. Currently,
GrenchMark incorporates rather simple models (statistical distributions for
submission patterns, for example, without correlations to other parameters or
feedback functionality). However, due to the extensibility, more complex notions
such as temporal models and parameters correlation (see Section 4.2), data and
network management (see Sections 5.3 and 5.4), or locality/origin management
(see Section 5.5) can be easily adapted. To introduce support for dynamically-

generated workloads into GrenchMark, the framework design needs to be ex-
tended with the ability to react to system changes for both workload generation
and submission. Since the reference implementation already uses feedback for
the submission process (for composite job submission and reacting to execution
errors [30]), the implementation of such functionality seems feasible and, as such,
we plan to address this issue in future work.

From the perspective of operating in a dynamic system, GrenchMark can
already respond to the situation when the background load can be extracted from
existing traces and, as such, is known, and o�ers adequate modeling capabilities.
For handling the background load as a separate workload, an extension is still
required. For a variable background load in a real environment (the most di�cult
case), the desired load could, for example, be controlled by coupling Grench-
Mark to existing monitoring services. Then, dummy jobs can be launched to
ensure a �xed level of background load during all experiments, as in Mohamed
and Epema [40]. However, the modeling itself remains an open issue.

Another important extension issue is the use of GrenchMark in di�erent
system scenarios (cf. to Section 2). We have already used GrenchMark in real
environments. For simulated environments, the reference implementation needs
to be extended to event-based simulation, which is work in progress.

Summarizing, GrenchMark provides a framework for Grid performance
evaluation which already contains basic modeling techniques, but needs to incor-
porate more sophisticated modeling capabilities in order to generate and analyse
Grid workloads.

7 Conclusion

In this work we have presented an integrated approach for generic grid perfor-
mance evaluation. For this purpose, we have �rst presented several grid per-
formance objectives, and made a selection for the general case. We have then
combined traditional and grid-speci�c workload modeling aspects, and synthe-
sized the requirements for realistic grid workload modeling. Finally, we have pre-

sented an existing framework for workload generation and analysis and pointed
out extension points on both modeling and infrastructure issues.

In order to validate our work with experimental results, we are currently
working on extensions to the GrenchMark framework to accommodate the
changes detailed in Section 6.2 with the goal to have a powerful, yet extensible
framework for workload modeling and analysis. We hope that this work will
become the jump-start for a common performance evaluation framework for
grid environments.

8 Acknowledgements

This research work is carried out under the FP6 Network of Excellence Core-
GRID funded by the European Commission (Contract IST-2002- 004265). Part
of this work was also carried out in the context of the Virtual Laboratory for
e-Science project (www.vl-e.nl), which is supported by a BSIK grant from the
Dutch Ministry of Education, Culture and Science (OC&W), and which is part
of the ICT innovation program of the Dutch Ministry of Economic A�airs (EZ).

References

1. Francine Berman, Richard Wolski, Henri Casanova, Walfredo Cirne, Holly Dail,
Marcio Faerman, Silvia M. Figueira, Jim Hayes, Graziano Obertelli, Jennifer M.
Schopf, Gary Shao, Shava Smallen, Neil T. Spring, Alan Su, and Dmitrii Zagorod-
nov. Adaptive computing on the grid using apples. IEEE Trans. Parallel Distrib.
Syst., 14(4):369�382, 2003.

2. N. Beume, M. Emmerich, C. Ernemann, L. Schï¿½nemann, and U. Schwiegelshohn.
Scheduling Algorithm Development based on Complex Owner De�ned Objectives.
Technical Report CI-190/05, University of Dortmund, January 2005.

3. Anca I. D. Bucur and Dick H. J. Epema. The performance of processor co-
allocation in multicluster systems. In Proc. of the 3rd IEEE Int'l. Symp. on Cluster
Computing and the Grid (CCGrid), pages 302�309, 2003.

4. Anca I. D. Bucur and Dick H. J. Epema. Trace-based simulations of processor
co-allocation policies in multiclusters. In Proc. of the 12th Intl. Symposium on
High-Performance Distributed Computing (HPDC), pages 70�79, 2003.

5. R. Buyya, D. Abramson, and S. Venugopal. The grid economy. In Special Issue of
the Proceedings of the IEEE on Grid Computing. IEEE Press, 2005. (To appear).

6. Maria Calzarossa and Giuseppe Serazzi. A characterization of the variation in time
of workload arrival patterns. IEEE Trans. Comput., C-34(2):156�162, Feb 1985.

7. Steve J. Chapin, Walfredo Cirne, Dror G. Feitelson, James Patton Jones, Scott T.
Leutenegger, Uwe Schwiegelshohn, Warren Smith, and David Talby. Benchmarks
and standards for the evaluation of parallel job schedulers. In Dror G. Feitelson and
Larry Rudolph, editors, Proc. of the 5th Int'l. Workshop on Job Scheduling Strate-
gies for Parallel Processing (JSSPP), volume 1659 of Lecture Notes in Computer
Science, pages 67�90. Springer, 1999.

8. Brent N. Chun, Philip Buonadonna, Alvin AuYoung, Chaki Ng, David C. Parkes,
Je�rey Shneidman, Alex C. Snoeren, and Amin Vahdat. Mirage: A microeconomic
resource allocation system for sensornet testbeds. In Proc. of 2nd IEEE Workshop
on Embedded Networked Sensors (EmNetsII), 2005.

9. Greg Chun, Holly Dail, Henri Casanova, and Allan Snavely. Benchmark probes
for grid assessment. In Proc. of the 18th International Parallel and Distributed
Processing Symposium (IPDPS), 2004.

10. Walfredo Cirne and Francine Berman. A Comprehensive Model of the Supercom-
puter Workload. In 4th Workshop on Workload Characterization, December 2001.

11. Walfredo Cirne and Francine Berman. A model for moldable supercomputer jobs.
In Proc. of the 15th International Parallel and Distributed Processing Symposium
(IPDPS), pages 59�79, 2001.

12. Allen B. Downey. A parallel workload model and its implications for processor
allocation. Cluster Computing, 1(1):133�145, 1998.

13. Catalin Dumitrescu, Ioan Raicu, and Ian T. Foster. Experiences in running work-
loads over grid3. In Hai Zhuge and Geo�rey Fox, editors, Grid and Cooperative
Computing (GCC), volume 3795 of Lecture Notes in Computer Science, pages 274�
286. Springer, 2005.

14. C. Ernemann and R. Yahyapour. Grid Resource Management - State of the Art
and Future Trends, chapter Applying Economic Scheduling Methods to Grid En-
vironments, pages 491�506. Kluwer Academic Publishers, 2003.

15. Carsten Ernemann, Volker Hamscher, Uwe Schwiegelshohn, Ramin Yahyapour,
and Achim Streit. On advantages of grid computing for parallel job scheduling. In
Proc. of the 2nd IEEE Int'l. Symp. on Cluster Computing and the Grid (CCGrid),
pages 39�49, 2002.

16. Carsten Ernemann, Volker Hamscher, and Ramin Yahyapour. Bene�ts of global
grid computing for job scheduling. In Proceedings of the 5th IEEE/ACM Interna-
tional Workshop on Grid Computing, Pittsburgh, November 2004. IEEE Computer
Society.

17. Carsten Ernemann, Baiyi Song, and Ramin Yahyapour. Scaling of Workload
Traces. In Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn, editors,
Job Scheduling Strategies for Parallel Processing, volume 2862 of Lecture Notes in
Computer Science, pages 166�183. Springer, October 2003.

18. Dror G. Feitelson. Packing Schemes for Gang Scheduling. In Dror G. Feitelson and
Larry Rudolph, editors, Job Scheduling Strategies for Parallel Processing, volume
1162 of Lecture Notes in Computer Science, pages 89�110. Springer, 1996.

19. Dror G. Feitelson. The forgotten factor: facts on performance evaluation and its
dependence on workloads. In B. Monien and R. Feldmann, editors, Euro-Par 2002
Parallel Processing, volume 2400, pages 49�60. Springer, 2002. Lecture Notes in
Computer Science.

20. Dror G. Feitelson. Workload Modeling for Performance Evaluation. In Mariacarla
Calzarossa and Sara Tucci, editors, Performance Evaluation of Complex Systems:
Techniques and Tools, volume 2459 of Lecture Notes in Computer Science, pages
114�141. Springer, 2002.

21. Dror G. Feitelson. Metric and workload e�ects on computer systems evaluation.
IEEE Computer, 36(9):18�25, 2003.

22. Dror G. Feitelson. Experimental analysis of the root causes of performance evalua-
tion results: a back�lling case study. IEEE Transactions on Parallel and Distributed
Systems, 16(2):175�182, Feb 2005.

23. Dror G. Feitelson and Larry Rudolph. Metrics and benchmarking for parallel job
scheduling. In Dror G. Feitelson and Larry Rudolph, editors, Proc. of the 4th Int'l.
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), volume
1459 of Lecture Notes in Computer Science, pages 1�24. Springer, 1998.

24. Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevcik, and
Parkson Wong. Theory and Practice in Parallel Job Scheduling. In Dror G. Feitel-
son and Larry Rudolph, editors, Proc. of the 3rd Int'l. Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP), volume 1291 of Lecture Notes in Com-
puter Science, pages 1�34, Geneva, April 1997. Springer-Verlag.

25. Ian Foster, Markus Fidler, Alain Roy, Volker Sander, and Linda Winkler. End-
to-end quality of service for high-end applications. Computer Communications,
27(14):1375�1388, September 2004.

26. Michael A. Frumkin and Rob F. Van der Wijngaart. Nas grid benchmarks: A
tool for grid space exploration. In Proc. of the 10th Intl. Symposium on High-
Performance Distributed Computing (HPDC), pages 315�326, 2001.

27. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Opti-
mization and approximation in deterministic sequencing and scheduling: A survey.
Annals of Discrete Mathematics, 15:287�326, 1979.

28. Soonwook Hwang and Carl Kesselman. Gridwork�ow: A �exible failure handling
framework for the grid. In Proc. of the 12th Intl. Symposium on High-Performance
Distributed Computing (HPDC), pages 126�137, 2003.

29. A. Iosup, J. Maassen, R.V. van Nieuwpoort, and D.H.J. Epema. Synthetic grid
workloads with Ibis, KOALA, and GrenchMark. In Proceedigs of the CoreGRID
Integrated Research in Grid Computing, Pisa, Italy, November 2005.

30. Alexandru Iosup and D.H.J. Epema. GrenchMark: A framework for analyzing,
testing, and comparing grids. In Proc. of the 6th IEEE/ACM Int'l. Symp. on
Cluster Computing and the GRID (CCGrid), May 2006. (accepted).

31. David Jackson, Quinn Snell, and Mark Clement. Core algorithms of the Maui
scheduler. In Dror G. Feitelson and Larry Rudolph, editors, Proc. of the 7th Int'l.
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), volume
2221 of Lecture Notes in Computer Science, pages 87�102. Springer, 2001.

32. R. Jain. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling,. Wiley-Intersci-
ence, New York, NY, USA, May 1991. Winner of �1991 Best Advanced How-To
Book, Systems� award from the Computer Press Association.

33. Chris Kenyon and Giorgos Cheliotis. Architecture requirements for commercial-
izing grid resources. In Proc. of the 11th Intl. Symposium on High-Performance
Distributed Computing (HPDC), pages 215�224, 2002.

34. George Kola, Tev�k Kosar, and Miron Livny. Phoenix: Making data-intensive grid
applications fault-tolerant. In Rajkumar Buyya, editor, GRID, pages 251�258.
IEEE Computer Society, 2004.

35. Derrick Kondo, Michela Taufer, Charles L. Brooks III, Henri Casanova, and An-
drew A. Chien. Characterizing and evaluating desktop grids: An empirical study.
In Proc. of the 18th International Parallel and Distributed Processing Symposium
(IPDPS), 2004.

36. Hui Li, David Groep, and Lex Wolters. Workload characteristics of a multi-cluster
supercomputer. In Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn,
editors, Job Scheduling Strategies for Parallel Processing (JSSPP'04), pages 176�
194. Springer-Verlag, June 2004.

37. Uri Lublin and Dror G. Feitelson. The workload on parallel supercomputers: Mod-
eling the characteristics of rigid jobs. Journal of Parallel and Distributed Comput-
ing, 63(20):1105�1122, 2003.

38. Raissa Medeiros, Walfredo Cirne, Francisco Vilar Brasileiro, and Jacques Philippe
Sauvé. Faults in grids: Why are they so bad and what can be done about it?. In
Heinz Stockinger, editor, GRID, pages 18�24. IEEE Computer Society, 2003.

39. Emmanuel Medernach. Workload analysis of a cluster in a grid environment. In
Dror G. Feitelson, Eitan Frachtenberg, Larry Rudolph, and Uwe Schwiegelshohn,
editors, Proc. of the 11th Int'l. Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP), volume 3834 of Lecture Notes in Computer Science, pages
36�61. Springer, 2005.

40. H.H. Mohamed and D.H.J. Epema. Experiences with the koala co-allocating sched-
uler in multiclusters. In Proc. of the 5th IEEE/ACM Int'l Symp. on Cluster Com-
puting and the GRID (CCGrid), May 2005.

41. M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, 2nd edi-
tion, 2002.

42. Wayne Schroeder, Richard Marciano, Joseph Lopez, and Michael K. Gleicher.
Analysis of HPSS Performance Based on Per-�le Transfer Logs. In Proc. of the
16th IEEE Mass Storage Systems Symposium, pages 103�115, San Diego, March
1999. IEEE Computer Society.

43. U. Schwiegelshohn and R. Yahyapour. Fairness in parallel job scheduling. Journal
of Scheduling, 3(5):297�320, 2000.

44. Hongzhang Shan, Leonid Oliker, and Rupak Biswas. Job superscheduler architec-
ture and performance in computational grid environments. In SC, pages 44�54.
ACM, 2003.

45. Baiyi Song, Carsten Ernemann, and Ramin Yahyapour. Parallel Computer Work-
load Modeling with Markov Chains. In Dror G. Feitelson, Larry Rudolph, and
Uwe Schwiegelshohn, editors, Proc. of the 10th Job Scheduling Strategies for Par-
allel Processing (JSSPP), volume 3277 of Lecture Notes in Computer Science, pages
47�62. Springer, October 2004.

46. Baiyi Song, Carsten Ernemann, and Ramin Yahyapour. User Group-based Work-
load Analysis and Modeling. In Proc. of the 5th Int'l. Symp. on Cluster Computing
and the Grid (CCGrid). IEEE Computer Society, 2005.

47. Douglas Thain, John Bent, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
and Miron Livny. Pipeline and batch sharing in grid workloads. In Proc. of the
12th Intl. Symposium on High-Performance Distributed Computing (HPDC), pages
152�161, 2003.

48. Mitchell D. Theys, Howard Jay Siegel, Noah B. Beck, Min Ta, and Michael Jur-
czyk. A Mathematical Model, Heuristic and Simulation Study for a Basic Data
Staging Problem in a Heterogenous Networking Environment. In Proc. of the 7th
Heterogeneous Computing Workshop, pages 115�122, Orlando, March 1998. IEEE
Computer Society.

49. G. Tsouloupas and M. D. Dikaiakos. GridBench: A workbench for grid bench-
marking. In P. M. A. Sloot, A. G. Hoekstra, T. Priol, A. Reinefeld, and M. Bubak,
editors, Proc. of the European Grid Conference (EGC), volume 3470 of Lecture
Notes in Computer Science, pages 211�225. Springer, 2005.

50. Rich Wolski, Neil Spring, and Jim Hayes. The network weather service: A dis-
tributed resource performance forecasting service for metacomputing. Journal of
Future Generation Computing Systems, 15(5-6):757�768, October 1999.

