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Abstract: Evaluation methods for parallel computers often require the availability of
relevant workload information. To this end, workload traces recorded on real instal-
lations are frequently used. Alternatively, workload models are applied. However,
often not all necessary information are available for a specific workload. In this paper,
a model is presented to recover an estimated job execution time when this informa-
tion is not available. The quality of the modelled estimated runtime is evaluated by
comparing different workload traces for which this information is available.

1 Introduction

During the design process of a parallel computer and its management software, the evalu-
ation of the system is an important task. Here, the availability of appropriate workloads is
necessary for quantitative evaluations. Substantial information is required about the work-
load which is executed on these systems. Ideally, the exact workload is available and can be
used during the design process. However, usually the exact workload for a certain system
is not known during the design process. For parallel computing, several of such workload
traces are available [SWFO04]. In addition, models for workload representations exist which
can also be used for the system design process [Do97a, Do97b, Fe96, JPFT97, LFO01].

This paper deals with the problem that often not all available workload traces contain in-
formation about the estimated runtime of a computational job. However, many scheduling
systems for parallel computers require that a user provides such information [FW98, LS02,
Li95]. Research in the area of workload modelling provided some methods to model sev-
eral workload parameters, as e.g. inter-arrival time, exact job run-time, required number of
processors. However, the correlation with other workload information is usually neglected,
as for instance the estimated runtime, user information, or application ID.

To this end, we present the analysis of the estimated runtime in correlation to other avail-
able parameters. Based on these results we propose a model to create estimations for the
estimated runtime. Such a model can be used to create estimated runtimes for workloads
which lack this information and subsequently makes more workloads available for the
design and evaluation process in which this information is required.



2 Background

The design of a parallel computer system including its scheduling method usually requires
the evaluation with suitable workloads. It is known that the system design highly depends
on the workload [ESY03]. Unfortunately, not one single scheduling method is best suited
for all scenarios. Therefore, the evaluation and subsequently the workload selection are
important tasks in the design process.

Currently, there is only a limited number of workload traces available which are recorded
from real system installations. To this end, several workload models, e.g. [Do97a, Do97b,
Fe96, JPFT97, LF01], have been derived from those traces to provide more flexibility.
However, these models consider only some of the job parameters which exist on a real
systems. Especially the estimated runtime of a job is neglected. Instead, only the actual
job runtime is modelled and used for evaluation. However, the job runtime is usually not
known at job submission on a real installation. But most scheduling systems which are
actually in use on parallel machines require a user provided estimated job runtime. For
instance, some scheduling algorithms use this information to estimate the maximum delay
of queued jobs if a particular job is executed. Note, jobs exceeding their estimated runtime
are usually killed after a grace time.

Cirne and Berman did consider the relations between the real runtime and estimated run-
time in [CBO1]. In their method the estimated runtime and the accuracy of the estimated
runtime are modelled independently. Based on these two parameters the real runtime of
the job is derived. Their model requires the availability of the estimated and real runtime in
the underlying workload trace to determine these model parameters. However, for several
existing workload traces the estimated runtime is missing, therefore a different model is
required to deduce estimated runtimes for such traces.

3 Analysis

Seven workload traces have been examined for analyzing the characteristics of the esti-
mated runtime. These workloads are publicly available on [SWF04]. Each contains several
thousands of jobs which are submitted on the corresponding machine during a timeframe
of several months, as shown in Table 1. Some of these traces include information about
estimated runtimes as provided by the users at job submission. Cirne and Berman assumed
in [CBO1] that a job cannot run longer than the estimated runtime. However, this is not
true for all traces as shown in Table 2. The table shows the accuracy of the user estimated
runtime which is defined in Equation 1. The table also shows the squashed area which is
the sum of the resource consumptions of all jobs (see Equation 2).

real runtime
accuracy = —/—————— (D
estimated runtime
squashed area = Z req_processors;; - run_time; (2)
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Identifier | NASA CTC KTH LANL SDSC SDSC95 | SDSC 96
SP2

Machine iPSC/860 | SP2 SP2 CM-5 SP2 SP2 SP2

Period 10/01/1993| 06/26/1996| 09/23/1996| 04/10/1994| 04/28/1998| 12/29/1994| 12/27/1995
12/31/1993| 05/31/1997| 08/29/1997| 09/24/1996| 04/30/2000| 12/30/1995| 12/31/1996

Processors | 128 430 100 1024 128 416 416

Jobs 42264 79302 28490 201378 67667 76872 38719

Estimated | no yes yes partially yes no no

runtime

Table 1: Workloads used in this research.

We can see that more than 10% of all jobs are exceeding their estimated runtime in the
SP2, CTC and LANL workloads. Thereby, these jobs cannot be neglected as they account
for more than 20% of the overall workload. However, we can also see that on average, with
the exception of LANL, not many jobs exceed their runtime by more than 10%. We neglect
jobs with an accuracy > 1.1 as they do not account for much amount of workload for the
corresponding trace. For LANL, however, more than 20% of the workload is caused by
jobs with an accuracy > 1.1. Therefore, we have to consider these jobs for this particular
workload trace.

accuracy > 1 accuracy > 1.1

Traces percentage | squash percentage | squash
of jobs area of jobs area
KTH 1% 2% 0.2% 1.1%
SP2 10% 26% 1.1% 1.1%
CTC 16% 20% 0.8% 1.2%
LANL 16% 30% 7% 22%

Table 2: Analysis of jobs exeeding the estimated runtime.

Note, that the estimated runtime is given in seconds. However, most users cannot provide
exact information about the job execution time.

In Table 3 the estimated runtimes for the workloads KTH, SDSC SP2 and CTC are or-
ganized into 20 groups. Those groups are build up from the most frequently provided
estimated runtimes by the users. As the results indicate most of the jobs fit to those 20
groups (about 80 % of all jobs). This indicates either that the users provide rounded es-
timates or that the estimated runtime is related to the configuration of available system
queues with certain job default values. In the appendix the corresponding groups for the
separate workloads KTH, SDSC SP2, CTC and LANL are presented.

In order to model the accuracy we found that for the workloads of KTH, SP2, CTC a Beta
distribution can be used [De86]. Note, the general formula for the Beta distribution func-
tion in Equation 3 where p and q are the shape parameters, a and b denote the bounds of
the distribution. The beta function is defined in Equation 4. Contrary, for LANL a Gamma
distribution is more suitable. The gamma distribution function is defined in Equation 5,
where Equation 6 describes the gamma function.



Group Requested | Percentage|| Group Requested | Percentage
runtime of all jobs runtime of all jobs

1 1 min 0.9 11 3 hours 3.9

2 5 mins 9.7 12 3.33 hours | 0.8

3 10 mins 7.0 13 4 hours 5.0

4 15 mins 6.8 14 5 hours 1.2

5 20 mins 32 15 6 hours 4.8

6 30 mins 4.0 16 8 hours 1.9

7 1 hour 6.3 17 10 hours 2.3

8 1.5 hours 0.8 18 12 hours 2.5

9 2 hours 5.0 19 15 hours 1.1

10 2.5 hours 0.8 20 18 hours 14.4

Table 3: Summarized alignment of all job within the examined workloads, Total Alignment: 82.67%.
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It can be seen from the traces that the accuracy depends on the real runtime, as shown
in Figure 1. However, Figure 1 for instance shows that the accuracy is not related to the
requested number of processors. Similarly, there is no correlation to other available job
parameters, as e.g. used memory. Therefore, it is sufficient to include the relation of
estimated to real runtime into the modelling.

However, we cannot utilize the method from [CBO1], in which the real runtime is mod-
elled by (real runtime = estimated runtime - accuracy) with an independent model for the
estimated runtime and accuracy. In our scenario, an integrated model is required for real
runtime and estimated runtime.

4 Modelling

In the following, we present a method to model the estimated runtimes if they are not
available in a trace. To this end, we examine the mentioned workloads with available
estimated runtimes to determine suitable modelling parameters.
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Figure 1: The relations of the accuracy to the number of requested processors (left) and the real
runtime (right).
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Figure 2: Comparison of the real (REAL) with the synthetic (SIM) accuracy (left) and runtime
(right) for KTH.

As mentioned before, we can use the Beta distribution [De86] to model the accuracy dis-
tribution for the KTH, CTC and SDSC SP2 workloads. Figure 2 shows the actual and
synthetic distributions. The LANL workload is modelled using the Gamma distribution.

However, this distribution model does not consider the relation of accuracy to the real run-
time, as shown in Figure 1. This dependency is important as some scheduling algorithms
like Backfilling are especially sensitive to the variations of estimated runtimes for jobs re-
quiring a small number of processors [FW98, LS02, Li95]. Therefore, an extended model
for the parameterizations of the Beta distribution function is established. In this model
the jobs of each workload are grouped by their runtime. For each of these groups of the
different workloads, parameter combination of p and q are identified in order to maintain
better similarity between the original and the synthetically generated workload. That is,
for each group the values p = f(real runtime) and ¢ = f(real runtime) can be found. The
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Figure 3: The relations between the real runtime and the parameters of the Beta distributions for
KTH. Note, the relations are similar for the traces of SDSC SP2 and CTC.

distribution functions are derived from the combination of these parameters by a linear
regression. In detail the process works as follows:

Step 1: In the first step all jobs are grouped by their real runtime. The jobs are grouped
by calculating the integer of the logarithm of the real runtime. In our examples, up to 13
different groups for the different workloads are created. This allows the examination of
the influence of the parameters p and q in a smaller subset of all jobs, as the run times
vary in a wide range. That is, the runtimes span from 1 to 107 seconds. For each of these
subsets a separate combination of the parameters p and q is generated.

In detail a group G; is build as follows:
G; = {xz|[log(real runtime,)] = r;;4 € [1,k];r; € N}

and a workload consists of k groups. In the following we refer to the real runtime as RRT.

Step 2: For each group G; a combination of p and q can be found for which the Beta
distribution resembles the original workload. The results in Figure 3 present the relation
between p, q and the runtime for the KTH workload are shown. As it can be seen the
parameters are not constant but p generally increases and q decreases with an increasing
group number (created depending on their runtime). All other workloads have a similar
behavior.

The parameters p and q are yet only described in a qualitative fashion. The next step
includes the determination of specific values for p and q depending on the real runtimes. To
this end we used a linear regression model for these two parameters. The parameters can be
described as follows: log(p) = log(RRT)-a1+by and log(log(q)) = log(RRT)-as+bs.
For q we used the log transformation twice as the results indicated a better fitting. For each
group GG; a Beta distribution with specific p; and ¢; exists. So k pairs (r;, p;) and (r;, ;)
can be used to derive the parameters (ay, b1) for p and (as, b2) for q. The accuracy can be
created for any given real runtime using the resulting functions for p and q. The estimated
runtime can easily be extracted by using this accuracy and the real runtime itself.



Figure 2 shows the cumulative distribution function (CDF) using the described method
to derive the estimated runtime. Here the KTH workload is presented, but all examined
workloads show a similar behavior. The distance between the artificially generated and the
original accuracy can still be reduced. The results in the figure indicate that an alignment of
the estimated runtimes can be used to improve the quality of our modelling, see Section 3.

To this end the transformation method is extended by including an alignment process.
From the available workloads we can see in Tables 3 that between 70 and 95% of all jobs
are aligned to some round values. Therefore, in our alignment modelling we decided that
with a probability of 80% the estimated runtime of a job is aligned to the nearest value
according to the rule in Table 4.

As the synthetically generated estimated runtime might be much higher, the synthetically
generated squashed area of the different workloads would be much higher than in the
original traces. Existing scheduling strategies like Backfilling [Li95] are sensitive to those
kinds of changes. To this end, the estimated runtime is bounded. Note, the runtime of
all jobs is unchanged and so the squashed area of all jobs of the different workloads is
not affected. The bound of the estimated runtime is selected from the highest value of all
jobs within the existing workloads. The maximum estimated runtimes of the examined
workloads are presented in Table 4. Therefore, we have chosen an upper bound of 60
hours for the synthetically generated estimated runtime.

Estimated runtime aligned to

before alignment multiples of

1 -5 min 1 min KTH SP2 CTC LANL
5 min - 60 min 5 min Maximum 60 48 18 8.33
1h - 4h 20 min

> 4h 1h

Table 4: Alignment of the modelled estimated runtime (left) and the maximum estimated runtime
(hours) of the different traces (right).

As mentioned in Section 3, the LANL workload has a wider range than all the other work-
loads and so a Beta distribution is not suitable. Therefore, a modified procedure has been
used for this workload. We have chosen a Gamma distribution [De86] to model the accu-
racy for this workload. Here the maximum estimated runtime for the alignment process is
selected by 8.33 hours (Table 4). The process of parameterizing the Gamma distribution is
similar to the method as described above; again, two parameters need to be extracted, this
time - and (3 instead of p and ¢. Also the final selection of a reasonable estimated runtime
is done by using the same algorithm as described for the other three workloads.

5 Evaluation

To measure the distance between the synthetic and original estimated runtime, we use
the Kolmogorov-Smirnov [Pa84] test (KS). Furthermore, we calculate the difference of
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Figure 4: The comparison of synthetic estimated runtime (SIM) and real estimated runtime (REAL)
for KTH (left) and LANL (right).

squashed area (SA) by

synthetic SA — original SA

dsA = original SA

In our experimental workloads, we have examined the KTH, SP2 and CTC. We used the
traces to train the model and feed the model with their own real runtime and compare the
estimated runtime of the same traces. The cumulative distribution functions (CDF) of the
synthetic and real estimated runtimes are plotted in Figure 4. The results of the KS tests
and the comparison of the squashed areas of the workloads are shown in Table 5.

KTH SP2 CIC
KSTest 006 0.4 0.5
dga  15% 9%  34%

Table 5: Comparison of KS test results and difference of squashed area (SA).

The KS test shows that our synthetic and original estimated runtimes are similar. However,
the results based on the comparison of the squashed areas are different for CTC. Here,
the generated workload has a squashed area which is 34% higher than for the original
workload. This is caused by our assumption of an upper bound for the estimated runtime
of a job. As can be seen from the original workload trace of CTC in Table 4, the upper
bound was much lower than 60 hours. In order to increase the precision of the estimation
a tighter upper bound is needed for the estimated runtime in the alignment process.

Next, we examine whether a general model can be derived to recover the estimated run-
times for traces in which they are missing. That is, we consider the case where we cannot
train the model and subsequently compare the results for a particular workload trace with
itself. Therefore, we trained the model with KTH, SP2 and CTC and combinations of
them. Finally, the synthetic estimated runtime is compared with the original estimated



runtime of the workloads, as shown in Tables 6. The KS test shows that the combination
of KTH, SP2 and CTC is suitable to train the model for all 3 workload traces. Indepen-
dently of the training workload, the original squashed area of the estimated workload is
much smaller for KTH. This is due to the fact that the overall accuracy of the estimated
runtime is considerably better than in all other workloads. Based on the averaging effect by
training with other workload traces, the lower modelled accuracy yields a higher estimated
runtime.

SA comparison KS test results

KTH  SP2 CTC | KTH SP2 CTC
3 KTH 15% —28% —30% | 0.06 0.18 0.18
S SP2 40% -9% —10% | 0.10 0.14 0.15
5 CTC 144%  40% 35% | 022 013 0.15
= KTH,SP2 49%  —12% —16% | 0.11 0.13 0.14
2 KTH,CTC 56%  —1% —5% | 013 0.1 0.3
£ SP2,CTC 96% 15% 7% 0.17 010 0.1
E  KTHSP2CTC | 61% —2% —7% | 012 0.12 0.3

Table 6: The comparison of synthetic estimated runtime and real estimated runtime

In our example, a decision must be made whether a workload resembles similarities with
a certain other workload and train the model accordingly. For instance, whether KTH or
SP2 or CTC is better suited to examine a workload and train the model accordingly to
recover the missing estimated runtimes.

For LANL, about 20% of the jobs have estimated runtime information available, while it
is missing for all other jobs. Therefore we trained our model with those 20% of entries
and used the model to recover the others. The CDF of synthetic and real estimated runtime
are plotted in Figure 4. We see acceptable results in regards to a KS test of 0.13, and a
difference of the squashed area of -7%.

The workloads generated by the presented model are online available [Pas04].

6 Conclusion

In this paper, we presented a model to recover an estimated job execution time for work-
load traces without such information. This value is often used in scheduling strategies
and therefore necessary in the evaluation process. Statistical criteria as e.g. given by the
Kolmogorov-Smirnov test showed that the model produces good results in comparison to
the original traces. The evaluation also showed that the parameterization of the model
varies for different workloads. While some parameter sets could be found to produce good
results for several workloads, a general model could not be found. The quality of the
modelling depends on the similarity of the workload used for training and the workload
scenario for which estimated runtimes are modelled. The presented method to model the
estimated runtimes is an example for recovering missing workload parameters. Similarly,
the method can be applied to other parameters.
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