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Abstract. Grid computing is a promising technology for future comput-
ing platforms. Here, the task of scheduling computing resources proves
difficult as resources are geographically distributed and owned by in-
dividuals with different access and cost policies. This paper addresses
the idea of applying economic models to the scheduling task. To this
end a scheduling infrastructure and a market-economic method is pre-
sented. The efficiency of this approach in terms of response- and wait-
time minimization as well as utilization is evaluated by simulations with
real workload traces. The evaluations show that the presented economic
scheduling algorithm provides similar or even better average weighted
response-times as common algorithms like backfilling. This is especially
promising as the presented economic models have additional advantages
as e.g. support for different price models, optimization objectives, access
policies or quality of service demands.

1 Introduction

Grid computing is expected to provide easier access to remote computational re-
sources that are usually locally limited. Distributed computer systems are joined
in such a grid environment (see [5, 12]), in which users can submit jobs that are
automatically assigned to suitable resources. The idea is similar to metacomput-
ing [20] where the focus is limited to compute resources. Grid computing takes
a broader approach by including networks, data, visualization devices etc. as
accessible resources [17, 11]. In addition to the benefit of access to locally un-
available resource types, there is also the expectation that a larger number of
resources is available for a single job. This is assumed to result in a reduction of
the average job response time. Moreover, the utilization of the grid computers
and the job-throughput is likely to improve due to load-balancing effects between
the participating systems.

Typically the parallel computing resources are not exclusively dedicated to
the grid environment. Furthermore, they are usually not owned and maintained
by the same administrative instance. Research institutes as well as laboratories
and universities are examples for such resource owners. Due to the geographi-
cally distributed resources and the different owners the management of the grid
environment becomes rather complex, especially the scheduling of the computa-
tional tasks. To this end, economic models for the scheduling are an adequate



way to solve this problem. They provide support for individual access and service
policies to the resource owners and grid users. Especially the ability to include
cost management into the scheduling will become an important aspect in future
grid economy as anonymous users compete for resources.

In this paper, we present an architecture and an economical scheduling model
for such grid environments. First examinations of the efficiency of this approach
have been performed by simulations. The results are discussed in comparison
to conventional scheduling algorithms that are not based on economic models.
Note, that these classic methods are primarily optimized for response-time min-
imization.

The following sections are organized as follows. Section 2 gives a short overview
on the background of grid scheduling and economic market methods. In Section
3 an infrastructure for a grid environment is presented that supports economic
scheduling models as well as common algorithms as for instance backfilling. The
economic scheduling method itself is described in Section 4. The simulation and
the results for this scheduling method are shown in Section 5. The paper ends
with a brief conclusion in Section 6.

2 Background

Scheduling is the task of allocating resources to problems over time. In grid
computing these problems are typically computational tasks called jobs. They
can be described by several parameters like the submission time, run time, the
needed number of processors etc.

In this paper we focus only on the job scheduling part of a grid management
infrastructure. A complete infrastructure has to address much more additional
topics as e.g. network and data management, information collection or job exe-
cution. One example for a grid management infrastructure is Globus [10]. Note,
that we examine scheduling for parallel jobs where the job parts can be executed
synchronously on different machines. It is task of the grid scheduling system to
find suitable resources for a job and to determine the allocation times. However,
the actual transfer, execution, synchronization and communication of a job is
not part of the grid scheduling system.

Until now mostly algorithms as e.g. FCFS and backfilling have been used for
the scheduling task [8, 16]. These classic methods have been subject to research
for a long time and have a well known behavior in terms of worst-case and
competitive analysis. These algorithms have been used for the management of
single parallel machines. In later implementations they were adapted for the
application in grid environments [13, 6]. As already mentioned, the requirements
on the scheduling method differs from single machine scheduling as the resources
are geographically distributed and owned by different individuals. The scheduling
objective is usually the minimization of the completion time of a computational
job on a single parallel machine. Especially for grid applications other objectives
have to be considered as cost, quality of service etc. To this end, other scheduling
approaches are necessary that can deal better with different user objectives as
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well as owner and resource policies. Here, naturally, economic models come into
mind.

An overview on such models can be found in [2] and economic concepts
have been additionally examined in the Mariposa project which is restricted to
distributed database systems [22]. In comparison to other economic approaches
on job scheduling (e.g. [27, 21]), our model supports varying utility functions
for the different jobs and resources. Additionally, the model is not restricted
to single parallel machines and allows further co-allocation of resources from
different owners without disclosing policy information.

In this paper we just give a brief introduction on the background for our
scheduling setting.

2.1 Market Methods

Market methods, sometimes called Market oriented programming in combination
with Computer Science, are used to solve the following problems which occur in
real scheduling environments ([4]):

– The site autonomy problem arises as the resources within the system
are owned by different companies.

– The heterogeneous substrate problem that results from the fact that
different companies use different resource management systems.

– The policy extensibility problem means that local management systems
can be changed without any effects for the rest of the system.

– The co-allocation problem addresses the aspect that some applications
need several resources of different companies at the same time. Market meth-
ods allow the combination of resources from different suppliers without fur-
ther knowledge of the underlying schedules.

– The online control problem is caused by the fact that the system works
in an online environment.

The supply and demand mechanisms provide the possibility to optimize differ-
ent objectives of the market participants under the usage of costs, prices and
utility functions. It is expected that such methods provide high robustness and
flexibility in the case of failures and a high adaptability during changes.

Next, the definitions of market, market method and agent will be presented
briefly.
A market can be defined as a virtual market or from an economical point of view
as follows: “Generally any context in which the sale and purchase of goods and
services takes place.” [25]. The minimal conditions to define a virtual market
are: “A market is a medium or context in which autonomous agents exchange
goods under the guidance of price in order to maximize their own utility.” [25].
The main aspect is that autonomous agents exchange voluntarily their goods in
order to maximize their own utility.

A market method can be defined as follows: “A market method is the overall
algorithmic structure within which a market mechanism or principle is embed-
ded.” [26]. It has to be emphasized that a market method is an equilibrium
protocol and not a complete algorithm.
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The definition of an agent can be found in [26]: “An agent is an entity whose
supply and demand functions are equilibrated with those of others by the mech-
anism, and whose utility is increased through exchange at equilibrium ratios.”.

It is now the question how the equilibrium can be obtained. One possible
method is the application of auctions: “An auction is a market institution with
an explicit set of rules determining resource allocation and price on the basis of
bids from the market participants.” [28]. More details about the general equilib-
rium and its existence can be found in [29].

2.2 Economic Scheduling in existing systems

Economic methods have been applied in various contexts. Besides the references
explained in [2], we want to briefly mention some other typical algorithms of
economic models.

WALRAS The WALRAS method is a classic approach by translating a com-
plex, distributed problem into an equilibrium problem [1]. One of the assump-
tions is that agents do not try to manipulate the prices with speculation, which
is called a perfect competition. To solve the equilibrium problem the WALRAS
method uses a Double Auction. During that process all agents send their util-
ity functions to a central auctioneer who calculates the equilibrium prices. A
separate auction is started for every good. At the end, the resulting prices are
transmitted to all agents. As the utility of goods may not be independent for the
agents, they can react on the new equilibrium prices by re-adjusting their utility
functions. Subsequently, the process starts again. This iteration is repeated until
the equilibrium prices are stabilized.

The WALRAS method has been used for transportation problems as well as
for processor rental. The transportation problem requires to transport different
goods over an existing network from different start places to different end places.
The processor rental problem consists of allocating one processor for different
processes, while all processes have to pay for the utilization.

Enterprise Another application example for market methods is the Enterprise
[24] system. Here, machines create offers for jobs to be run on these machines.
To this end, all jobs describe their necessary environment in detail. After all
machines have created their offers the jobs select between these offers. The ma-
chine that provides the shortest response time has the highest priority and will
be chosen by the job. All machines have a priority scheme where jobs with a
shorter run time have a higher priority.

Under the premise of these methods, we present in the next sections our
infrastructure and scheduling method for the grid job scheduling.
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3 Infrastructure

The scheduling model presented in this paper has been implemented within
the NWIRE (Net-Wide-Resources) management infrastructure which has been
developed at our institute [19]. The general idea is that local management struc-
tures provide remote access to resources, which are represented by CORBA ob-
jects. The scheduling part is using those structures to trade resources between
them. While staying locally controlled, the resources are offered throughout the
connected management-systems.

To address the site autonomy problem, NWIRE structures the system into
separate domains, that are constituted by a set of local resources and local man-
agement instances. Each so called MetaDomain is controlled by a MetaManager,
as shown in Figure 1.
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Fig. 1. Structure of NWIRE

This MetaManager administers the local resources and answers to local job
requests. Additionally, this MetaManager consists of a local scheduler and acts as
a broker/trader to other remote MetaDomains respectively their MetaManagers.
That is the local MetaManager can offer local resources to other domains or tries
to find suitable resource allocations for local requests.

The MetaManager can discover other domains by using directory services as
well as exploring the neighborhood similar to peer-to-peer network strategies.
If necessary, requests can be forwarded to the MetaManager of other domains.
Parameters in the request are used to control depth and strategy of this search.
Information on the location of specific resource types can be cached for later re-
quests. Each MetaManager maintains a list with links to other dedicated Meta-
Managers. This list can be set up by the administrator to comply with logical
or physical relationships to other domains, e.g. according to network or business
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Fig. 2. Scheduling Steps

connections. Additionally, directory services can be introduced to find specific
resource types. Information on remote resources can be cached and used to select
suitable MetaManagers to which a request is forwarded.

This concept provides several advantages e.g. an increased reliability and
fail-safety as the domains act independently. A failure at one site has only local
impact as the overall network is still intact. Another feature is the ability to allow
different implementations of the scheduling and the offer generation. According
to the policy at an institution, the owner can setup an implementation that suits
his needs best. Note, the policy on how offers for remote job requests are created
does not have to be revealed.

This scheduling-infrastructure provides the base to implement different strate-
gies for the scheduler. This also includes the ability to use conventional methods
like for instance backfilling. Within the NWIRE system, this is achieved by us-
ing so called requests for the information exchange between the user and the
components involved in the scheduling. The request is a flexible description of
the conditions of a set of resources that are necessary for a job.
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4 Economic Scheduling

interrogation of

new
request

request
for the new
create offers

local machines

first selection

remote domains

second selection

create offer

Fig. 3. General application
flow.

This section includes a description of the sche-
duling algorithm that has been implemented for
the presented infrastructure. The general appli-
cation flow can be seen in Figure 3. In contrast to
[3], our scheduling model does not rely on a sin-
gle central scheduling instance. Moreover, each
domain acts independently and may have dif-
ferent objective policies. Also the job requests
of the users can have individual objective func-
tions. The scheduling model has the task to com-
bine these objectives to find the equilibrium of
the market. This is a derivation of the previously
presented methods of WALRAS and Enterprise.

In our scheduling model all users submit their
job requests to the local MetaManager of the do-
main as shown in Figure 2. For example, the user
specifies that his job requires 3 processors with
certain properties as for instance the architec-
ture. Additionally a utility function UF is sup-
plied by the user. For instance the user in our ex-
ample is interested in the minimization of the job
start time, which can be achieved by maximizing
the utility function UF = (−StartT ime).

The estimated job run-time is also given in
addition to an earliest start and latest end time.
Note, that a job is allocated for the requested
run-time and is terminated if the job exceeds

this time. If a job finishes earlier, the resulting idle time of resources can be
allocated to later submitted jobs. These idle resources can be further exploited
by introduction of a rescheduling step which has not been applied in this work.
Rescheduling can be used to re-allocate jobs while maintaining the guarantees
of the previous allocations. This can be compared with backfilling, although
guaranteed allocations, e.g. due to remote dependencies by co-allocation, must
be fulfilled. The rescheduling may require additionally requests for offers.

The request is analyzed by the scheduler of the receiving MetaManager. The
scheduler creates, if possible, offers for all local machines. After this step, a first
selection takes place where only the best offers are kept for further processing.
According to the job parameters and the found offers, the request is forwarded
to the schedulers of other domains. This is possible as long as the number of
hops (search depth of involved domains) for this request is not exceeded and
the time to live for this request is still valid. In addition none of the domains
must have received this request before. The remote domains create new offers
and send their best combinations back. If a job has been processed before no
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further offers are generated. A second selection process takes place in order to
find the best offers among the returned result of this particular domain.

Note, that this method is an auction with neither a central nor a decentral
auctioneer. Moreover, the different objective functions of all participants are used
for equilibration. For each potential offer o for request i the utility value UVi,o

is evaluated and returned within the offer to the originating MetaDomain that
received the user’s request. The utility value is calculated by the user supplied
utility function UFi which can be formulated with the job and offer param-
eters. Additionally to this parameter set Pu the machine value MVi,j of the
corresponding machine j can be included.

UVi,o = UFi(Pu,MVi,j)
MVi,j = MFj(Pm)

Check Request

the schedule

grain selection
of an interval

fine selection
of an interval

create
offer

[no Multi−Site]

[Multi−Site]

Request

Search for free
Intervals within

Fig. 4. Local offer
creation.

The machine value results from the machine ob-
jective function MF which can depend on a param-
eter set Pm.

The originating MetaManager selects the offer
with the highest utility value UVi,o. In principle
this MetaManager serves the tasks of an auctioneer.

Next, we examine the local offer generation in
more detail. To this end the application flow is
shown in Figure 4.

Within the Check Request phase it is deter-
mined if either the best offer has to be automat-
ically selected or if the user is going to select an
offer interactively among a given number of possi-
ble offers.

In the same step the user‘s budget is checked
whether it is sufficient in order to process the job
at the local machines. The actual accounting and
billing was not part of this study and requires ad-
ditional work. Furthermore in this step, it is veri-
fied if local resources meet the requirements of the
request. Next, the necessary scheduling parameters
are extracted which are included in the request, e.g.
the earliest start time of the job, the deadline (end
time), the maximum search time, the time until the
resources will be reserved for the job (reservation
time), the expected run time and the number of re-
quired resources. Another parameter is the utility
function which is applied in the further selection
process.

If not enough resources can be found during the Check Request phase, but all
other requirements can be fulfilled by the local resources, a multi-site scheduling
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will be initiated. In this case additional and modified offers are requested from
remote domains to meet in combination the original job requirements. This is
an example of co-allocating resources from different owners.

The next step Search for free intervals within the schedule tries to find all
free time intervals within the requested time frame on the suitable resources. As
a simple example assume a parallel computer with dedicated processors as the
resources. The example schedule is given in Figure 5. The black areas within the
schedule are already allocated by other jobs. The job in our example requests
three processors and has a start time A, an end time D and a run time less than
(C−B). First, free time intervals are extracted for each processor. Next, the free
intervals of several processors are combined in order to find possible solutions.
To this end, a list is created with triples of the form {time, processor number,
+/-1} which means that the processor with the specified processor number is
free (+1) or not free (-1) at the examined time.

The generated list is used to find possible solutions as shown in the following
pseudo-code:

list tempList;
LOOP:while(generatedList not empty)
{
get the time t of the next element in the sourceList;

test for all elements in tempList whether the difference
between the beginning of the free interval and the time t
is bigger or equal to the run time of the job;

if(number of elements in tempList, which fulfill the time
condition, is bigger or equal the needed number of
processors)
{
create offers from the elements of the tempList;

}
if(enough offers found)
{
finish LOOP;

}
add or substract the elements of the sourceList to or
from tempList which have time entry t;

}

The given algorithm creates potential offers that include e.g. start time, end
time, run time and the requested number of processors as well as the user utility
value (UVi,o).
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Note, that it remains to be shown how the offer is created from the elements
of this list. Such an algorithm will be presented in the following. The goal is to
find areas of enough resources within the schedule for a given list of free time
intervals. This has to take into account that resources possibly have different
start and end times. The resulting areas are characterized by the earliest start
and latest end time. To this end a derivation of a bucket sort is used. In the
first step all intervals with the same start time are collected in the same bucket.
In the second step for each bucket the elements with the same end time are
collected in new buckets. At the end each bucket has a list of resources available
between the same start and end time.

For the example above, the algorithm creates three buckets as shown in
Figures 6, 7 and 8. After the creation of buckets suitable offers are generated
either with elements from one bucket if the bucket includes enough resources
or by combining elements of different buckets. Additional care must be taken
as elements from different buckets can have different start and end times. The
maximum start and the minimum end time must be calculated. In our example
only bucket 1 can fulfill the requirements alone and therefore an offer can be
build e.g. with resources 1, 2 and 5.

In order to generate different offers a bucket for which an offer was only
possible by its own elements is modified to contain one resource less than the
required number. Afterwards, the process is continued. If yet not enough solu-
tions are found and no further bucket can fulfill the request by itself as well as
the number of remaining elements of all buckets is greater or equal to the re-
quested resource number, new solutions are generated by combinations of bucket
elements in regard to the intersecting time frames.
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In our example, together with the solution build from bucket 1 the whole
set of solutions would be: {{1,2,5}, {1,2,3}, {1,2,4}, {1,2,7}, {1,3,4}, {1,3,7},
{1,4,7}, {2,3,4}, {2,3,7}, {3,4,7}}.

After the end of the Search for free intervals within the schedule phase from
Figure 4 a grain selection of one of these intervals takes place in the next phase.
In principle a large number of solutions are possible by modifying the start and
end time for the job in every combination and then selecting the interval with
the highest utility value. In practice this is not applicable in regards to the run-
time of the algorithm. Therefore a heuristic is used by selecting the combination
having the highest utility value for the earliest start time. Next, the start and
end time are modified to improve this utility value. The modification with the
highest value is selected as the resulting offer during the phase “fine selection of
an interval” in Figure 4.

A number of steps can be defined which specifies the number of different start
and end times within the given time interval. Note, that the utility function is
not constrained in terms of monotony. Therefore, the selection process above is
heuristic.

After this phase the algorithm is finished and possible offers are generated.

The utility functions of the machine owner and the user have not been dis-
cussed yet. This method allows both of them to define their own utility function.
In our implementation any mathematical formula, using any valid time and re-
source variables, is supported. Overall, the resulting value for the user’s utility
function is maximized. The linkage to the objective function of the machine
owner is created by the price for the machine usage which equals the machine
owner’s utility function. The price may be included in the user’s utility function.

The owner of the machine can build the utility function with additional
variables that are first available after the schedule has been generated. Figure 9
shows variables that are used in our implementation. The variable under specifies
the area in the schedule in which the corresponding resources (processors) are
unused before the job allocation. over determines the area of unused resources
after the job to the next job start on the according resources or to the end of
the schedule. The variable left right specifies the area on the left and right side
of the job. The variable utilization specifies the utilization of the machine if the
job is allocated. This is defined by the relation between the sum of all allocated
areas to the whole available area from the current time instance to the end of
the schedule.

Note, that the network has explicitly not been considered. Further work can
easily extend the presented model to include network dependencies into the se-
lection and evaluation process. For example, the network latency and bandwidth
during job execution can be considered by parameterizing the job run-time dur-
ing the scheduling.

However, the network is regarded in terms of resource partitioning and site
autonomy. The presented model focuses on the cooperation scheme and economic
scheduling scheme between the MetaManagers of independent domains. Herein,

11



a MetaManager can allocate jobs without direct control over remote resources
and without the exposure of local control.
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Fig. 9. Parameters for the calculation of the owner utility function.

5 Simulation and Evaluation

In this section the simulation environment is described. First, the resource con-
figurations that are used for our evaluation are described followed by an intro-
duction of the applied job model.

5.1 Resource Configurations

All three examined resource configurations have a sum of 512 processors in
common. The configurations differ in the processor distribution on machines
as shown in Table 1.

The configurations m128 and m256 are scenarios that resemble companies
with several branch offices or a combination of universities. The configuration
m384 characterizes a large data processing center which is connected to several
smaller client sites. The configurations m128 and m256 are balanced in the sense
of an equal number of processors at each machine. The configuration m384 in
comparison is unbalanced. The resource configuration m512 serves as a reference
with a single large machine executing all jobs.
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identifier configuration maximum sum
size

m128 4 · 128 128 512

m256 2 · 256 256 512

m384 1 · 384 + 1 · 64 + 4 · 16 384 512

m512 1 · 512 512 512

Table 1. Used resource configurations.

In order to apply economic scheduling methods utility functions are required
as mentioned before. Therefore, 6 different owner objective functions have been
chosen for the first evaluation. Further extensive study is necessary to optimize
the objective functions in regards to better results. The first one describes the
most general owner utility function from which all others are derived. The owner
machine function MF1 consists of several terms. The first term:

NumberOfProcessors · RunTime

calculates the area that the job is using within the schedule. The second term
calculates the free areas before and after the job as well as the parallel idle time
for the other resources within the local schedule (see Figure 9):

over + under + left right.

The last term of the formula is:

1 − left right rel,

where left right rel describes the relation between the free areas to the left
and right of the job within the schedule (left right) and the area actual used by
the job. A small factor describes that the free areas on both sides are small in
comparison to the job area. This leads to the following objective function MF1

and its derivations MF2 - MF6:

MF1 = (NumberOfProcessors · RunTime + over + under + left right)

· (1 − left right rel),

MF2 = (NumberOfProcessors · RunTime + over + under + left right),

MF3 = (NumberOfProcessors · RunTime + over + under) · (1 − left right rel),

MF4 = (NumberOfProcessors · RunTime + left right) · (1 − left right rel),

MF5 = (NumberOfProcessors · RunTime + over + left right) · (1 − left right rel),

MF6 = (NumberOfProcessors · RunTime + under + left right)

· (1 − left right rel).
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5.2 Job Configurations

Unfortunately, no real workload is currently available for grid computing. For
our evaluation we derived a suitable workload from real machine traces. These
traces have been obtained from the Cornell Theory Center and are based on
an IBM RS6000/SP parallel computer with 430 nodes. For more details on the
traces and the configuration see the description of Hotovy [14]. The workload is
available from the standard workload archive [23].

In order to use these traces for this study it was necessary to modify the
traces to simulate submissions at independent sites with local users. To this end,
the jobs from the real traces have been assigned in a round-robin fashion to the
different sites. It is typical for many known workloads to favor jobs requiring
a power of 2 nodes. The CTC workload shows the same characteristic. The
modeling of configurations with smaller machines would put these machines
into disadvantage if the number of nodes is not a power of 2. To this end, our
configurations consist of 512 nodes. Nevertheless, the traces consist of enough
workload to keep a sufficient backlog on conventional scheduling systems (see
[13]). The backlog is the amount of workload that is queued at any time instance
if there are not enough free resources to start the jobs. A sufficient backlog is
important as a small or even no backlog indicates that the system is not fully
utilized. In this case there is not enough workload available to keep the machines
working. Many schedulers, e.g. the mentioned backfilling strategy, require that
enough jobs are available for backfilling in order to utilize idle resources. This
case usually leads to a bad scheduling quality and unrealistic results. Note, that
backlog analysis is only possible for the conventional scheduling algorithms. The
economic method does not use a queue as the job allocation is directly scheduled
after submission time.

Over all the quality of a scheduler is highly dependent on the workload. To
minimize the risk to achieve singular effects the simulations have been done for
4 workload sets: 2.

identifier description

10 20k org An extract of the original CTC traces from job 10000 to 20000.

30 40k org An extract of the original CTC traces from job 30000 to 40000.

60 70k org An extract of the original CTC traces from job 60000 to 70000.

syn org The synthetically generated workload derived from the CTC workload
traces.

Table 2. The used workloads

The synthetic workload is very similar to the CTC data set, see [15]. It has
been generated to prevent that singular effects in real traces, e.g. machine down
times, do not affect the accuracy of the result. Also the usage of 3 extracts of
the real traces are used to get information on the consistency of the results for
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the CTC workload. Each workload set consists of 10000 jobs which corresponds
to a period of more than three months in real time.

The same workloads have been applied for the simulations with conventional
scheduling systems in [13, 6]. This allows the comparison of economic systems in
this work to the non-economic scheduling systems in [13, 6, 7].

Additionally, a utility function for each job is necessary in economic schedul-
ing to represent the preferences of the corresponding user. To this end, the fol-
lowing 5 user utility functions (UF) have been applied for our first evaluations.

The first user utility function prefers the earliest start time of the job. All
processing costs are ignored.

UF1 = (−StartT ime)

The second user utility function only considers the calculation costs caused by
the job.

UF2 = (−JobCost)

The last user utility functions are combinations of the first two, but with different
weights.

UF3 = (−(StartT ime + JobCost))
UF4 = (−(StartT ime + 2 · JobCost))
UF5 = (−(2 · StartT ime + JobCost))

5.3 Results

Discrete event-based simulations have been performed according to the previ-
ously described architecture and settings.

Figure 10 shows a comparison of the average weighted response time for
the economically based and for the conventional first-come-first-serve/backfilling
scheduling system. The average weighted response time is the sum of the cor-
responding run and wait times weighted by the resource consumption which is
the number of resources multiplied with the job execution time. Note that the
mentioned weight prevents any prioritization of small over wider jobs in regard
to the average weighted response time if no resources are left idle [18]. The av-
erage weighted response time is a mean for the schedule quality from the user
perspective. A shorter AWRT indicates that the users have to wait less for the
completion of their jobs.

For both systems the best achieved results have been selected. Note, that
the used machine and utility functions differ between the economic simulations.
The results show for all used workloads and all resource configurations that
the economically based scheduling system has the capability to outperform the
conventional first-come-first-serve/backfilling strategy.

Backfilling can be outperformed as the economic scheduling system is not
restricted in the job execution order. Within this system a job, that was submit-
ted after another already scheduled job, can be started earlier, if corresponding
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Fig. 10. Comparison between Economic and Conventional Scheduling.

resources can be found. The conventional backfilling strategy used with the first-
come-first-serve algorithm ([16]) can only start jobs earlier if all jobs that were
transmitted before are not additionally delayed. The EASY backfilling lowers
this restriction to not delay the first job in the queue ([9]) does not result in a
better performance. The restriction of out-of-order execution in backfilling pre-
vents job starvation. The economic method does not encounter the starvation
problem as the job execution is immediately allocated after submission.

Figure 10 only shows the best results for the economic scheduling system.
Now, in Figure 11, a comparison between the economic and the conventional
scheduling system for only one machine/utility function combination is pre-
sented.

The used combination of MF1 and UF1 leads to scheduling results that can
outperform the conventional system for all used workloads and configurations
m128 and m512. Note, that the benefit of the economic method was achieved by
applying a single machine/utility function combination for all workloads. This
indicates that suitable machine/user utility functions can provide good results
for various workloads.

Figure 12 presents the AWRT combined with the average weighted wait
time (AWWT) using the same weight selection. In all cases the same resource
configuration as well as the same machine/utility function combination are used.
The time differences between the simulations for both resource configurations
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Fig. 11. Comparison between Economic and Conventional Scheduling for the Resource
Configurations m128 and m512 using MF1 - UF1.

are small. This shows that the algorithm for multi-site scheduling (for resource
configuration m128), although it is more complex, does not result in a much
worse response time in comparison to a single machine. Note, that multi-site
execution is not penalized by an overhead in our evaluation. Therefore, the
optimal benefit of job splitting is examined and only the capability of supporting
multi-site in an economic environment over remote sites is regarded. Here, effects
of splitting jobs may even improve the scheduling results.

Figure 13 demonstrates that the average weighted response as well as the av-
erage weighted wait time do not differ significantly between the different resource
configurations. In this case, the machine configurations prove limited impact on
the effect on multi-site scheduling. Here, the overall number of processors is of
higher significance in our economic algorithm. Configurations with bigger ma-
chines have smaller average weighted response times than configurations with a
collection of smaller machines.

The influence of using different machine/utility function combinations for a
resource set is shown in Figure 14. Here, the squashed area (the sum of the
products of the run time and the number of processors) is given for different
resource configuration. The variant m128 is balanced in the sense of having
equal sized machines. The desired optimal behavior is usually an equal balanced
workload distribution on all machines.
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Fig. 12. AWRT and AWWT for m128 and m512 using several workloads, machine
function MF1 and utility function UF1.

The combination of (MF1, UF1) leads to a workload distribution where the
decrease of the local squashed area is nearly constant between the machines
ordered by their number as shown in Figure 14. The maximum difference between
the squashed areas is about 18%.

In the second case, the combination (MF1, UF2) presents a better outcome
in sense of a nearly equally distributed workload.

The third function combination (MF2, UF2) leads to an unbalanced result.
Two of the machines execute about 67% of the overall workload and the two
remaining machines the rest.

Simulation results are shown for keeping the same machine/utility function
combinations in Figure 15. The combination of (MF1, UF2) does not perform
very well in terms of the utilization as all machines achieve less than 29%. This
indicates in combination with Figure 14 that a well distributed workload cor-
responds with a lower utilization. The combination of (MF1, UF1) leads to a
utilization between 61% and 77% on all machines. The third examined combi-
nation (MF2, UF2) shows a very good utilization of two machines (over 85%)
and a very low utilization on the others (under 45%). In this case the distributed
workloads correlates with the utilization of the machines.

After the presentation of the distributed workload and the corresponding uti-
lization the AWWT and AWRT, shown in Figure 16 clearly indicates that only
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Fig. 13. AWRT and AWWT for all Resource Configurations and the syn org workload
in combination with MF1 - UF1.

the function combination (MF1, UF1) leads to reasonable scheduling results.
The results from Figures 14,15 and 16 demonstrate that different machine/utility
function combinations may result in completely different scheduling behaviors.
Therefore an appropriate selection of these functions is important for an eco-
nomic scheduling system.

In the following the comparison of different machine/utility functions is
shown for the resource configuration m128. In Figure 17 the average weighted
response time is drawn for all different machine function in combination with
utility function UF3. The average weighted response time for the machine func-
tion MF2 performs significantly better than all other machine functions. Here,
the factor 1 − left right rel, which is used in all other machine functions, does
not work well for this machine configuration. It seems to be beneficial to use
absolute values for the areas instead, e.g. (NumberOfProcessors ·RunTime +
over+under+left right). Unexpectedly, Figure 17 also shows that the intended
reduction the free areas within the schedule before the job starts, with attribute
under, results in very poor average weighted response times (see the results for
MF1, MF3, MF6).

As machine function (MF2) provided significantly better results, different
user utility functions are compared in combination with MF2 in Figure 18.
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Fig. 14. The used Squashed Area of simulations with m128 and syn org using different
machine and utility functions.

Fig. 15. The resulting utilization of simulations with m128 and syn org using different
machine and utility functions.
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Fig. 16. The resulting average weighted response and wait times of simulations with
m128 and syn org using different machine and utility functions.

Fig. 17. The resulting average weighted response for resource configuration m128, util-
ity function UF3 and several machine functions.
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Fig. 18. The resulting average weighted response for resource configuration m128, ma-
chine function MF2 and several utility functions.

Utility function UF1, which only takes the job start time into account, results
in the best average weighted response time. In this case, no attention was paid
to the resulting job cost. For our selection of the machine objective function
this means that minimization of the free areas around the job is not regarded.
The utility functions that include this job cost deliver inferior results in terms
of the average weighted response times. The second best result originates from
the usage of the utility function UF3. In opposite to UF1 the starting time and
the job costs are equally weighted. All other utility combinations in which either
only the job costs (UF2) or unbalanced weights for the starting time and the job
costs are used, lead to higher response times.

Note that the execution time of the simulations on a SUN-Ultra III machine
varied according to the chosen machine and user utility functions. For an ex-
ample the scheduling of 10000 jobs required about 1 hour, which means that
the scheduling of one job lasts about one second on average. Nevertheless, this
highly depends on the number of available resources. In an actual implementa-
tion the search time can be limited by a parameter given by the user or chosen
by a heuristic based on job length and/or job arrival rate.
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6 Conclusion

In this paper we presented an infrastructure and an economic scheduling sys-
tem for grid environments. The quality of the algorithm has been examined by
discrete event simulations with different workloads (4, each with 10.000 jobs),
different machine configurations (4, each with a sum of 512 processors) and
several parameter settings for owner and user utility functions.

The results demonstrate that the used economical model provides results
in the range of conventional algorithms in terms of the average weighted re-
sponse time. In comparison, the economical method leaves a much higher flex-
ibility in defining the desired resources. Also the problems of site autonomy,
heterogenous resources and individual owner policies are solved by the structure
of this economic approach. Moreover, the owner and user utility function may be
set individually for each job request. Additionally, features as co-allocation and
multi-site scheduling over different resource domains are supported. Especially
the possible advance reservation of resources is an advantage. In comparison to
conventional scheduling systems there is instant feedback by the scheduler on the
expected execution time of a job already at submit time. Note that conventional
schedulers based on list scheduling as e.g. backfilling can provide estimates or
bounds on the completion time. However, the economic method presented in this
paper leads to a specific allocation in start and end-time as well as the resource.
Guarantees can be given and maintained if requested. This includes the submis-
sion of jobs that request a specific start and end-time which is also necessary for
co-allocating resources.

Note, that the examined utility functions in the simulations are first ap-
proaches and leave room for further analysis and optimization. Nevertheless, the
results presented in this paper indicate that an appropriate utility function for a
given resource configuration delivers steady performance on different workloads.

Further research is necessary to extend the presented model to incorporate
the network as a limited resource which has to be managed and scheduled as
well. In this case a network service can be designed similar to a managed com-
puting resource which provides information on offers or guarantees for possible
allocations, e.g. bandwidth or quality-of-service features.

A more extensive parameter study for comprehensive knowledge on their
influence on cost and execution time is necessary. To this end, future work can
analyze scenarios in which different objective functions are assigned to each
domain. Also the effect of a larger number of machines and domains in the grid
must be evaluated.

The presented architecture in general provides support for re-scheduling, that
means improving the schedule by permanently exploring alternative offers for ex-
isting allocations. This feature should be examined in more detail for optimizing
the schedule as well as for re-organizing the schedule in case of a system or job
failure.
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