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Abstract

This paper addresses the potential benefit of sharing jobs
between independent sites in a grid computing environment.
Also the aspect of parallel multi-site job execution on dif-
ferent sites is discussed. To this end, various scheduling
algorithms have been simulated for several machine config-
urations with different workloads which have been derived
from real traces. The results showed that a significant im-
provement in terms of a smaller average response time is
achievable. The usage of multi-site applications can addi-
tionally improve the results as long as the increase of the
execution time due to communication overhead is limited to
about 25%.

1 Introduction

Grid computing is intended to offer seamless access to
rare and limited resources as e.g. high-performance parallel
computers. A computational grid (see [2, 8]) is the cooper-
ation of distributed computer systems where user jobs can
be executed either on local or on remote computer systems.
The idea is similar to the former metacomputing [17] where
the focus was limited to compute resources while grid com-
puting takes a broader approach [13, 7]. On one hand it pro-
vides the user with access to locally unavailable resource
types. On the other hand there is the expectation that a
larger number of resources is available. It is expected that
this will result in a reduction of the average job response
time. Also the utilization of the grid computers and the
job-throughput is likely to improve due to load-balancing
effects between the participating systems.

Now, parallel computing resources are usually not ex-
clusively dedicated to grid computing. Furthermore, they

are typically not owned and maintained by the same admin-
istrative instance. Research institutes are an example for
such resource owners, as well as laboratories and universi-
ties. Without grid computing local users are usually only
working on the local resources. The owners of those com-
puting systems are interested in the consequences of partici-
pating in a computational grid and whether such a participa-
tion will result in better service for the users by improving
the job response time. Therefore, we want to determine the
practical benefit of the collaboration of computing sites.

The usage of multi-site applications has been theoreti-
cally discussed for quite some time [1]. Multi-site comput-
ing is the execution of a job in parallel at different sites.
This results in a larger number of totally available resources
for a single job. The effect on the average job response time
is yet to be determined as there are only few real multi-site
applications. This lack of real multi-site applications may
be the result of a absence of a common grid computing en-
vironment which is able to support allocating resources in
parallel on remote sites. In addition many user fear a signif-
icant adverse effect on the computation time due to the lim-
itations in network bandwidth and latency over wide-area
networks. This overhead depends on the communication
requirements between the process parts of a particular ap-
plication. As WAN networks become ever faster, this over-
head may decrease over time. It is therefore a subject of
the paper to determine which amount of overhead will still
result in an overall user benefit.

To evaluate the effect of multi-site applications in a grid
environment, we examine the usage of multi-site jobs in ad-
dition to job sharing. To this end, discrete event simula-
tions on the basis of workload traces have been executed
for sample configurations. The potential benefit is evalu-
ated if a computing site participates in a computational grid.
The paper is focused on the question whether sharing jobs



between sites and/or using multi-site applications provide
advantages in mastering the existing workload.

The paper is organized as follows. First, our schedul-
ing model is discussed in the next section. In Section 3 we
present the used algorithms. The simulations and their re-
sults are presented and discussed in Section 4. The paper
ends with a brief conclusion.

2 Models

2.1 Site Model

As already mentioned before, we assume a computing
grid consisting of independent computing sites with their
local workloads. That means that each site has its own com-
puting resources as well as local users that submit jobs to the
local job scheduling system. In a typical single site scenario
all jobs are only executed on local resources.

The sites may combine their resources and share incom-
ing job submissions in a grid computing environment. Here,
jobs can be executed on local and remote machines. The
computing resources are expected to be completely com-
mitted to grid usage. That is job submissions of all sites
are redirected and distributed by a grid scheduler. This
scheduler exclusively controls all grid resources. For a real
world application this may be a requirement difficult to ful-
fill. There are other possible implementations where site-
autonomy is still maintained.

2.2 Machine Model

We assume massive parallel processor systems (MPP) as
the computing resources where each site has a single paral-
lel machine that consists of several nodes. Each node has
its own processor, memory, disk etc. The nodes inside a
machine are connected with a fast interconnection network
that does not favor any communication pattern inside the
machine [4]. This means a parallel job can be allocated on
any subset of nodes of a machine. This model comes rea-
sonably close to real systems like an IBM RS/6000 Scalable
Parallel Computer, a Sun Enterprise 10000 or a HPC cluster.

For simplicity all nodes in this study are identical. The
machines at the different sites only differ in the number of
nodes. The existence of different resource types would limit
the number of suitable machines for a job. In a real im-
plementation such a preselection is part of grid scheduling
and normally executed before the actual scheduling process
takes place. After the preselection phase the scheduler can
ideally choose from several resources that are suitable for
the job request. In this study we neglect this preselection
process and focus on the scheduling result. Therefore, it is
assumed that all resources are of the same type and all jobs
can be executed on all nodes.

The machines support space-sharing and run the jobs in
an exclusive fashion. Moreover, the jobs are not preempted
nor time-sharing is used. Therefore, once started a job runs
until completion. Furthermore, in our study we do not con-
sider the case that a job exceeds its allocated time. Af-
ter submission a job requests a fixed number of resources
that are necessary for starting the job. This number is not
changed during the execution of the job. That is jobs are not
moldable or malleable [5, 3].

2.3 Job Model

Jobs are submitted by independent users on the local
sites. This produces an incoming stream of jobs over time.
Therefore, the scheduling problem is an on-line scenario
without any knowledge on future job submissions.

We restrict our simulations on batch jobs, as this job type
is dominant on most MPP systems. For interactive jobs
there are usually dedicated machine partitions where the ef-
fect of the scheduling algorithm is quite limited. In addition
interactive jobs are usually executed on local resources.

It is the task of the scheduling system to allocate the jobs
to resources and determine the starting time. Then the job
is executed without further user interaction. Data manage-
ment of any files is neglected in this study. In our grid com-
puting scenario, a job can be transmitted to a remote site
without any overhead. In a real implementation the trans-
port of data requires additional time. This effect can often
be hidden by pre- and postfetching before and after the exe-
cution. In this case the resulting overhead is not necessarily
part of the scheduling process.

In a grid environment we assume the ability of jobs to
run in multi-site mode. That means a job can run in parallel
on a node set distributed over different sites. This allows the
execution of large jobs that require more nodes as available
on a single machine in the grid environment. The impact
of bandwidth and latency has to be considered as wide-area
networks are involved. In the simulations, we will address
this subject by increasing the job length if multi-site execu-
tion is applied to a job.

2.4 Scheduling System

In parallel job scheduling on single parallel machines,
simple first-come-first-serve (FCFS) strategies have often
been applied. As an advantage, these algorithms provide
some kind of fairness (see [15]) and are deterministic for
the user. Nevertheless, it can result in poor quality if jobs
with large node requirements are submitted. To this end,
a strategy called backfilling has become standard on most
systems. It requires knowledge of the expected job execu-
tion time and can be applied to any greedy list schedule. If
the next job in the list cannot be started due to a lack of
available resources, backfilling tries to find another job in



the list which can use the idle resources. But it will not
postpone the execution of the next job in the list. The back-
filling algorithm has been introduced by Lifka [12].

In our scenario for grid computing, the task of schedul-
ing is delegated to a grid scheduler. The local scheduler is
only responsible for starting the jobs after allocation by the
grid scheduler. Note, that we use a central grid scheduler for
our study. In a real implementation the architecture of the
grid scheduler can differ as single central instances usually
lead to drawbacks in performance, fail-safety or acceptance
of resource users and owners. Nevertheless, distributed ar-
chitectures can be designed that act similar as a central grid
scheduler.

3 Algorithms

Three scenarios have been examined in this paper: job-
sharing between computing sites in a small grid environ-
ment, in addition with multi-site computing and as a ref-
erence a scenario with the normal local job processing of
independent sites.

3.1 Local Job Processing
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Figure 1. Sites executing all jobs locally

This scenario refers to the common situation where the
local computing resources at a site are dedicated only to its
local users (see Figure 1). A local workload is generated at
each site. This workload is not shared with other sites. In
our examination the forementioned backfilling scheduler is
applied.

There are 2 variants of backfilling as described by Feit-
elson and Weil [6]. EASY backfill is the original method by
Lifka [12]. It has for example been implemented for several
IBM SP2 installations [16]. While EASY backfill will not
postpone the projected execution of the next job in the list,
it may increase the completion time of jobs further down the
list, see [6]. The other variant is Conservative backfill will

not increase the projected completion time of a job that has
been submitted before the job which is currently backfilled
[6]. On the other hand conservative backfill requires more
computational effort than EASY.

In this work we just present the results for EASY backfill
algorithm as its performance proved to be more effective in
our simulations than conservative backfilling.

3.2 Job Sharing
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Figure 2. Sites sharing jobs and resources

In the job-sharing scenario all jobs submitted at any site
are delegated to the grid scheduler as seen in Figure 2. In
our examination the scheduling algorithms in grid comput-
ing consist of two steps. In the first step the machine is
selected and in the second step the allocation in time for
this machine takes place.

Machine Selection:

There are several methods possible for selecting machines.
Earlier simulations results (presented in [9]) showed good
results for a selection strategy called BestFit. Here, the ma-
chine is selected on which the job leaves the least number
of free resources if started.

Scheduling Algorithm:

Here, the backfilling strategy is applied for the single ma-
chines as well. This algorithm has shown best results in
previous studies.

3.3 Multi-Site Computing

This scenario is similar to job sharing: a grid scheduler
receives all submitted jobs. Additionally, jobs can now be
executed crossing site boundaries (see Figure 3).

There are several strategies possible for multi-site
scheduling. For this work we use a scheduler which first
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Figure 3. Support for multi-site execution of
jobs

tries to find a site that has enough free resources for starting
the job. If such a machine is not available, the scheduler
tries to allocate the jobs on resources from different sites.
To this end the sites are sorted in the descending order of
free resources and allocating the free resources in this order
for a multi-site job. In this case the number of combined
sites is minimized. If there are not enough resources free
for a job, it is queued and normal backfilling is applied.

Spawning job parts over different sites usually produces
an additional overhead. This overhead is due to the commu-
nication over slow networks (e.g. a WAN). Consequently,
the overall execution time of the job will increase depend-
ing on the communication pattern. For jobs with limited
communication demand there is only a small impact. Note,
without any penalty for multi-site execution, the grid would
behave like a single large computer. Hence, multi-site
scheduling will outperform all other scheduling strategies.
In this study we examine the effect of multi-site processing
on the schedule quality under the influence of a communi-
cation overhead. To this end, the influence of the overhead
is modelled by extending the required execution time ri to
r∗i for a job i that runs on multiple sites by a constant factor:
r∗i = (1 + p) · ri with p = 0 .. 40 % in steps of 5%.

4 Evaluation

For the evaluation of the different structures and algo-
rithms a discrete event simulation was performed. Several
machine configurations have been examined for the fore-
mentioned algorithms.

4.1 Machine Configurations

All configurations use a total of 512 resources. Those
resources are partitioned in the various machines as shown
in Table 1. The configurations m128 and m256 are repre-

identifier configuration max. size sum

m64 4 · 64 + 6 · 32 + 8 · 8 64 512
m128 4 · 128 128 512
m256 2 · 256 256 512
m384 1 · 384 + 1 · 64 + 4 · 16 384 512
m512 1 · 512 512 512

Table 1. Resource Configurations

sentations of several sites with equal machines. They are
balanced as there is an equal number of resources at each
machine. The configuration m384 represents a large com-
puting center with several client sites. The configuration
m64 represents a cluster of several sites with smaller ma-
chines.

Finally, a reference configuration m512 consists of a sin-
gle site with one large machine. In this case no grid com-
puting is used and a single scheduler can control the whole
machine without any need to split jobs.

4.2 Workload Model

Unfortunately, no real workload is currently available for
grid computing. For our evaluation we derived a suitable
workload from real machine traces. These traces have been
obtained from the Cornell Theory Center and are based on
an IBM RS6000/SP parallel computer with 430 nodes. For
more details on the traces and the configuration see the de-
scription of Hotovy [10]. The workload is available from
the standard workload archive [18].

In order to use these traces for this study it was necessary
to modify the traces to simulate submissions at independent
sites with local users. To this end, the jobs from the real
traces have been assigned in a round-robin fashion to the
different sites. It is typical for many known workloads to
favor jobs requiring a power of 2 nodes. The CTC workload
shows the same characteristic. The modelling of configura-
tions with smaller machines would put these machines into
disadvantage if the number of nodes is not a power of 2.
To this end, our configurations consist of 512 nodes. Nev-
ertheless, the traces consist of enough workload to keep a
sufficient backlog on all systems (see [9]). The backlog is
the workload that is queued at any time instance if there
are not enough free resources to start the jobs. A sufficient
backlog is important as a small or even no backlog indicates
that the system is not fully utilized. In this case there is not
enough workload available to keep the machines working.
Many schedulers, e.g. the mentioned backfilling strategy,
require that enough jobs are available for backfilling in or-
der to utilize idle resources. This case usually leads to a bad
scheduling quality and unrealistic results.

Over all the quality of a scheduler is highly dependent
on the workload. To minimize the risk to achieve singular
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Figure 4. Average Weighted Response Time
for the m128 configuration and workload ctcsyn
with modification 2

effects the simulations have been done for 4 workload sets:

• A synthetic probabilistic generated workload on the
basis of the CTC traces.

• 3 extracts of the original CTC traces.

The synthetic workload is very similar to the CTC data
set [11]. It has been generated to prevent that these singular
effects in real traces do not affect the accuracy of the re-
sult. Also the usage of 3 extracts of the real traces are used
to get information on the consistency of the results for the
CTC workload. Each workload set consists of 10000 jobs
which corresponds in real time to a period of more than
three months.

A problem of such simulations is the handling of wide
jobs contained in the original workload traces. The widest
job in the CTC traces e.g. requests 336 processing nodes.
On one hand these jobs can be used in simulations with
multi-site. Here jobs can be split over different sites to get
more resources than available at a single site. On the other
hand, some of these jobs cannot be started in simulations of
scenarios with only local execution or job sharing.

To permit the validity of comparing simulation results,
jobs cannot be neglected. Therefore we assume that the
workload of wide jobs is still generated at a single site.
Wide jobs are split up into several parts of the machine size
to allow their execution. Accordingly, the job size is lim-
ited by the size of the largest machine in the job-sharing
scenario. Here, users can submit jobs that are wider than
the local machine size. To allow the comparison of differ-
ent scenarios the following modifications have been applied
to each forementioned workload.
Workload Modifications:

1. Wide Jobs are split in parts of local machine size,

2. Wide Jobs are split in parts of largest machine size in
the configuration,

3. Wide jobs are unchanged.

The workloads with modification 1 were executed in all
3 scenarios. The workloads with modification 2 were simu-
lated on scenario job-sharing and multi-site while modifica-
tion 3 was only used for the multi-site scenario. Note, that
all of these modification do not alter the overall workload.
We assume that a certain amount of workload exists at a lo-
cal site. Depending on the scenario a user may submit jobs
larger then the local machine. The simulations allow the ex-
amination of the impact caused by wider multi-site jobs on
the schedule.

4.3 Results

The simulation results show that job-sharing provides
significant improvement over local job execution for the
user. As a measure the average weighted response time is
used in this study. The response time of each job is the
difference between the completion time and the submission
time. The response time of each job is weighted by its re-
source consumption. The average weighted response time
is the sum of all weighted response times divided by the
sum of the resource consumptions of all jobs.

Average Response Time weighted by Width:

AWRT =

∑
j∈Jobs (j.reqResources · (j.endTime − j.submitTime))

∑
j∈Jobs j.reqResources

Note that the mentioned weight prevents any priori-
tization of small over wider jobs in regard to the aver-
age weighted response time if no resources are left idle
[14]. The average weighted response time is a mean for
the schedule quality from the user perspective. A shorter
AWRT indicates that the users have to wait less for the com-
pletion of their jobs.
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Figure 5. Results for different resource configurations compared to configuration m512 with backfill-
ing(0%)

The mentioned improvement of job-sharing can be seen
in the results for all configurations and workload sets. Fig-
ure 4 shows the average weighted response time for the
m128 configuration with an improvement of over 50%.
Similar results can be found in the other simulations. The
average weighted response time of locally executed jobs
certainly depends on the local workload modelling. The re-
sults shown in this paper for single-site execution and job-
sharing are generated using an EASY backfill scheduler. In
contrast to job-sharing single-site execution is restricted to
keep the workload locally. That means that no job is trans-
ferred to a remote site. As mentioned before large jobs that
are wider than the local machine have been split up into
smaller jobs which are sequentially executed on the local
system. This leads to a significant increase of the AWRT
due to the applied weight on each job-part. Job-sharing
on the other hand allows the transfer of jobs to remote ma-
chines.

Further improvements of the AWRT can be achieved by
using multi-site execution. As a reference the result for a
single machine with 512 nodes is also given in Figure 4.
The result of this m512 configuration gives the lower bound
for the backfilling algorithm. In this configuration no ma-
chine partitioning has to be taken into account contrary to
any other configuration. Figure 4 shows simulation results
for multi-site execution with different run-time overhead for
split jobs (0%..40%). As expected, the average weighted
response time without overhead for multi-site is near the
m512 result. In this case splitting a job for multi-site execu-
tion causes no penalty.

Moreover, multi-site execution is beneficial compared to
job-sharing even for an overhead on execution time of about

25%.
Figure 5 shows the improvement for other configurations

with jobs limited to the maximum machine size. Note, that
the configurations with equal sized machines show better
results than for the m384 or m64 configurations. Here, the
overhead can be even larger on the equal-sized machines for
multi-site to still be beneficial.

Figure 6 shows the average weighted response time for
some sample workloads. Note, that the workload as shown
in Figure 4 produces the least effective improvements. The
average weighted response time in other configurations de-
livered better results. Here, the overhead on multi-site exe-
cuted jobs can even be larger.

The example given in Figure 4 represents the workload
where all original wide jobs with node requirements larger
than 128 were split up into jobs requesting 128 or less
nodes. As mentioned before simulations were computed
for multi-site execution with the original job size. Figure
7 shows that submitting these wide jobs does not increase
the average weighted response time significantly. The im-
provement over job-sharing is valid even as these wider jobs
are actually more complex to schedule as the job start time
has to be synchronized between all job parts. Note, that this
simulation cannot be computed for the job-sharing scenario
as these wide jobs can only be executed in a multi-site sce-
nario.

5 Conclusion

The results show that the collaboration between sites by
exchanging jobs even without multi-site execution signifi-
cantly improves the average weighted response time. This is
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Figure 6. Results for different workloads

already achieved with a simple algorithm of a central sched-
uler as used in this work.

Furthermore, the usage of multi-site applications leads
to even better results under the assumption of a limited in-
crease on job execution time due to communication over-
head. Even an increase of their execution time by 25%
multi-site proved to be benefical compared to job-sharing.
WAN networks are in terms of latency in the order of 2-3
magnitudes slower than common fast interconnection net-
works between nodes inside a parallel computer, e.g. an
IBM SP Switch. Therefore it cannot be concluded that
multi-site is suitable for all applications. Whereas multi-
site is beneficial for applications with a limited demand in
communication.

As grid environments and networks are becoming more
common, it seems reasonable for resource owners to par-
ticipate in such initiatives. Simple strategies like job shar-
ing significantly improve the average weighted response
time and therefore the quality of service to the users. Also
the research and effort in developing multi-site programs
for suitable applications with limited demand in network
communication can provide even better results. Further-
more, multi-site applications can effectively use more re-
sources for a single job than available at any single machine.
The drawback due to submitting a wider instead of several
smaller jobs was limited in our simulations. Of course this
may vary with the amount of wide jobs in a workload.

Note, that the applied algorithms for scheduling in this
work are simple extensions of backfilling and node se-
lection strategies. Additional research on more sophisti-
cated scheduling algorithms is necessary which may pro-
duce even better results. It has to be kept in mind, that the

quality of a schedule depends on the actual configuration
and workload. The improvements presented in this paper
were achieved using example configurations and workloads
derived from a real trace. The outcome may vary in other
settings. Nevertheless, the results show that job-sharing and
multi-site execution in a grid environment are capable of
significantly improving the scheduling quality for the users.
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